scholarly journals Optimal Sample Sizes in Experimental Designs With Individuals Nested Within Clusters

2003 ◽  
Vol 2 (3) ◽  
pp. 151-175 ◽  
Author(s):  
Mirjam Moerbeek ◽  
Gerard J. P. Van Breukelen ◽  
Martijn P. F. Berger ◽  
Marlein Ausems Marlein Ausems
2014 ◽  
Vol 25 (01) ◽  
pp. 12-28 ◽  
Author(s):  
Osval Antonio Montesinos-López ◽  
Kent Eskridge ◽  
Abelardo Montesinos-López ◽  
José Crossa

2021 ◽  
Author(s):  
Metin Bulus

A recent systematic review of experimental studies conducted in Turkey between 2010 and 2020 reported that small sample sizes had been a significant drawback (Bulus and Koyuncu, 2021). A small chunk of the studies were small-scale true experiments (subjects randomized into the treatment and control groups). The remaining studies consisted of quasi-experiments (subjects in treatment and control groups were matched on pretest or other covariates) and weak experiments (neither randomized nor matched but had the control group). They had an average sample size below 70 for different domains and outcomes. These small sample sizes imply a strong (and perhaps erroneous) assumption about the minimum relevant effect size (MRES) of intervention before an experiment is conducted; that is, a standardized intervention effect of Cohen’s d < 0.50 is not relevant to education policy or practice. Thus, an introduction to sample size determination for pretest-posttest simple experimental designs is warranted. This study describes nuts and bolts of sample size determination, derives expressions for optimal design under differential cost per treatment and control units, provide convenient tables to guide sample size decisions for MRES values between 0.20 ≤ Cohen’s d ≤ 0.50, and describe the relevant software along with illustrations.


2009 ◽  
Vol 29 (6) ◽  
pp. 643-660 ◽  
Author(s):  
Stefano Conti ◽  
Karl Claxton

Bayesian decision theory can be used not only to establish the optimal sample size and its allocation in a single clinical study but also to identify an optimal portfolio of research combining different types of study design. Within a single study, the highest societal payoff to proposed research is achieved when its sample sizes and allocation between available treatment options are chosen to maximize the expected net benefit of sampling (ENBS). Where a number of different types of study informing different parameters in the decision problem could be conducted, the simultaneous estimation of ENBS across all dimensions of the design space is required to identify the optimal sample sizes and allocations within such a research portfolio. This is illustrated through a simple example of a decision model of zanamivir for the treatment of influenza. The possible study designs include: 1) a single trial of all the parameters, 2) a clinical trial providing evidence only on clinical endpoints, 3) an epidemiological study of natural history of disease, and 4) a survey of quality of life. The possible combinations, samples sizes, and allocation between trial arms are evaluated over a range of cost-effectiveness thresholds. The computational challenges are addressed by implementing optimization algorithms to search the ENBS surface more efficiently over such large dimensions.


2012 ◽  
Author(s):  
Victor Fossaluza ◽  
Patricia Viana da Silva
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document