Geometric phase of quantized electromagnetic field in time-dependent linear media

2010 ◽  
Vol 89 (4) ◽  
pp. 40009 ◽  
Author(s):  
M. Maamache ◽  
N. Chaabi ◽  
J. R. Choi
2011 ◽  
Vol 50 (6) ◽  
pp. 1719-1725
Author(s):  
An-Ling Wang ◽  
Fu-Ping Liu ◽  
Zhao-Xian Yu

2012 ◽  
pp. 457-497
Author(s):  
Gilbert Grynberg ◽  
Alain Aspect ◽  
Claude Fabre ◽  
Claude Cohen-Tannoudji

2019 ◽  
Vol 34 (26) ◽  
pp. 1950149
Author(s):  
Marzieh Hossein Zadeh ◽  
Majid Amooshahi

A fully canonical quantization of electromagnetic field in the presence of a bi-anisotropic absorbing magneto-dielectric cylindrical shell is provided. The mode expansions of the dynamical quantum fields, contained in the theory, is achieved and the ladder operators of the system are introduced. Using the Frobenius’s series technique, the Maxwell’s equations in the presence of the bi-anisotropic absorbing magneto-dielectric cylindrical shell are solved and the space–time dependence of the quantized electromagnetic field is obtained. Applying the conservation principle of the angular momentum, the net quantum vacuum torque exerted on the bi-anisotropic absorbing magneto-dielectric cylindrical shell is calculated. The net quantum vacuum torque exerted on the cylindrical shell is calculated in the vacuum state and the thermal state of the system. The quantum vacuum torque on the cylindrical shell identically vanishes when the bi-anisotropic absorbing magneto-dielectric cylindrical shell is converted to an isotropic one.


2003 ◽  
Vol 81 (10) ◽  
pp. 1185-1191
Author(s):  
J -Q Shen ◽  
P Chen ◽  
H Mao

The present paper finds the complete set of exact solutions of the general time-dependent dynamical models for quantum decoherence, by making use of the Lewis–Riesenfeld invariant theory and the invariant-related unitary transformation formulation. Based on this, the general explicit expression for the decoherence factor is then obtained and the adiabatic classical limit of an illustrative example is discussed. The result (i.e., the adiabatic classical limit) obtained in this paper is consistent with what is obtained by other authors, and furthermore we obtain more general results concerning time-dependent nonadiabatic quantum decoherence. It is shown that the invariant theory is appropriate for treating both the time-dependent quantum decoherence and the geometric phase factor. PACS Nos.: 03.65.Ge, 03.65.Bz


Sign in / Sign up

Export Citation Format

Share Document