scholarly journals Revisiting a low-dimensional model with short range interactions and mean field critical behavior

Author(s):  
Peter Grassberger

Abstract In all local low-dimensional models, scaling at critical points deviates from mean field behavior – with one possible exception. This exceptional model with “ordinary” behavior is an inherently non-equilibrium model studied some time ago by H.-M. Bröker and myself. In simulations, its 2-dimensional version suggested that two critical exponents were mean-field, while a third one showed very small deviations. Moreover, the numerics agreed almost perfectly with an explicit mean field model. In the present paper we present simulations with much higher statistics, both for 2d and 3d. In both cases we find that the deviations of all critical exponents from their mean field values are non-leading corrections, and that the scaling is precisely of mean field type. As in the original paper, we propose that the mechanism for this is “confusion”, a strong randomization of the phases of feed-backs that can occur in non-equilibrium systems.

2015 ◽  
Vol 05 (03) ◽  
pp. 1550024
Author(s):  
H. Yurtseven ◽  
F. Oğuz

Using Landau mean field model, the spontaneous polarization and the dielectric susceptibility are analyzed as functions of temperature and pressure close to the cubic–tetragonal (ferroelectric–paraelectric) transition in [Formula: see text]. From the analysis of the dielectric susceptibility and the spontaneous polarization, the critical exponents are deduced in the classical and quantum limits for [Formula: see text]. From the critical behavior of the dielectric susceptibility, the spontaneous polarization can be described for the ferroelectric–paraelectric (cubic to tetragonal) transition between 4 and 8 GPa at constant temperatures of 0 to 200 K in [Formula: see text] within the Landau mean field model given here.


1993 ◽  
Vol 157 ◽  
pp. 83-89
Author(s):  
J. Kurths ◽  
A. Brandenburg ◽  
U. Feudel ◽  
W. Jansen

Two nonlinear dynamos have been analyzed by numerical means: 3D-simulation of the magneto-hydrodynamic equations and qualitative analysis of a simplified low-dimensional mean field model. It turns out that both are capable of deterministic chaos in a certain parameter range. As the basic tool the calculation of Lyapunov exponents has been used.


2009 ◽  
Vol 623 ◽  
pp. 283-316 ◽  
Author(s):  
DIRK M. LUCHTENBURG ◽  
BERT GÜNTHER ◽  
BERND R. NOACK ◽  
RUDIBERT KING ◽  
GILEAD TADMOR

A low-dimensional Galerkin model is proposed for the flow around a high-lift configuration, describing natural vortex shedding, the high-frequency actuated flow with increased lift and transients between both states. The form of the dynamical system has been derived from a generalized mean-field consideration. Steady state and transient URANS (unsteady Reynolds-averaged Navier–Stokes) simulation data are employed to derive the expansion modes and to calibrate the system parameters. The model identifies the mean field as the mediator between the high-frequency actuation and the low-frequency natural shedding instability.


2008 ◽  
Author(s):  
Angelo Facchini ◽  
Stefano Ruffo ◽  
Alessandro Campa ◽  
Andrea Giansanti ◽  
Giovanna Morigi ◽  
...  

2014 ◽  
Vol 2014 (1) ◽  
pp. 13D02-0 ◽  
Author(s):  
J. N. Hu ◽  
A. Li ◽  
H. Shen ◽  
H. Toki

2011 ◽  
Vol 20 (08) ◽  
pp. 1663-1675 ◽  
Author(s):  
A. BHAGWAT ◽  
Y. K. GAMBHIR

Systematic investigations of the pairing and two-neutron separation energies which play a crucial role in the evolution of shell structure in nuclei, are carried out within the framework of relativistic mean-field model. The shell closures are found to be robust, as expected, up to the lead region. New shell closures appear in low mass region. In the superheavy region, on the other hand, it is found that the shell closures are not as robust, and they depend on the particular combinations of neutron and proton numbers. Effect of deformation on the shell structure is found to be marginal.


2001 ◽  
Vol 34 (23) ◽  
pp. 8378-8379 ◽  
Author(s):  
M. Hamm ◽  
G. Goldbeck-Wood ◽  
A. V. Zvelindovsky ◽  
G. J. A. Sevink ◽  
J. G. E. M. Fraaije

Sign in / Sign up

Export Citation Format

Share Document