scholarly journals Shape oscillation of a rotating Bose-Einstein condensate

2004 ◽  
Vol 65 (5) ◽  
pp. 594-600 ◽  
Author(s):  
S Stock ◽  
V Bretin ◽  
F Chevy ◽  
J Dalibard
2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Rong-Gen Cai ◽  
Shao-Jiang Wang ◽  
Su Yi ◽  
Jiang-Hao Yu

AbstractUltra-cold atom experiment in space with microgravity allows for realization of dilute atomic-gas Bose-Einstein condensate (BEC) with macroscopically large occupation number and significantly long condensate lifetime, which allows for a precise measurement on the shape oscillation frequency by calibrating itself over numerous oscillation periods. In this paper, we propose to measure the Newtonian gravitational constant via ultra-cold atom BEC with shape oscillation, although it is experimentally challenging. We also make a preliminary perspective on constraining the modified Newtonian potential such as the power-law potential, Yukawa interaction, and fat graviton. A resolution of frequency measurement of $$(1-100)\,\mathrm {nHz}$$ ( 1 - 100 ) nHz at most for the occupation number $$10^9$$ 10 9 , just one order above experimentally achievable number $$N\sim 10^6{-}10^8$$ N ∼ 10 6 - 10 8 , is feasible to constrain the modified Newtonian potential with Yukawa interaction greatly beyond the current exclusion limits.


2021 ◽  
Vol 126 (3) ◽  
Author(s):  
T. Dieterle ◽  
M. Berngruber ◽  
C. Hölzl ◽  
R. Löw ◽  
K. Jachymski ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tobias Kroker ◽  
Mario Großmann ◽  
Klaus Sengstock ◽  
Markus Drescher ◽  
Philipp Wessels-Staarmann ◽  
...  

AbstractPlasma dynamics critically depends on density and temperature, thus well-controlled experimental realizations are essential benchmarks for theoretical models. The formation of an ultracold plasma can be triggered by ionizing a tunable number of atoms in a micrometer-sized volume of a 87Rb Bose-Einstein condensate (BEC) by a single femtosecond laser pulse. The large density combined with the low temperature of the BEC give rise to an initially strongly coupled plasma in a so far unexplored regime bridging ultracold neutral plasma and ionized nanoclusters. Here, we report on ultrafast cooling of electrons, trapped on orbital trajectories in the long-range Coulomb potential of the dense ionic core, with a cooling rate of 400 K ps−1. Furthermore, our experimental setup grants direct access to the electron temperature that relaxes from 5250 K to below 10 K in less than 500 ns.


2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


Sign in / Sign up

Export Citation Format

Share Document