An inositol phosphate glycan derived from a Trypanosoma brucei glycosyl phosphatidylinositol promotes protein dephosphorylation in rat epididymal adipocytes.

Endocrinology ◽  
1994 ◽  
Vol 135 (5) ◽  
pp. 1869-1876 ◽  
Author(s):  
D E Misek ◽  
A R Saltiel

The molecular events involved in the cellular actions of insulin remain unexplained. Some of the acute actions of the hormone may be due to the intracellular generation of a chemical substance which modulates certain enzyme activities. Such an enzymemodulating substance has been identified as an inositol phosphate-glycan, produced by the insulin-sensitive hydrolysis of a glycosyl-phosphatidylinositol (glycosyl-Ptdlns) precursor. This precursor glycolipid is structurally similar to the glycosylphosphoinositide membrane protein anchor. The exposure of fat, liver or muscle cells to insulin results in the hydrolysis of glycosyl-Ptdlns, giving rise to the inositol phosphate glycan and diacylglycerol. This hydrolysis reaction is catalysed by a glycosyl-PtdIns-specific phospholipase C. This enzyme has been characterized and purified from a plasma membrane fraction of liver. This reaction also results in the acute release of certain glycosyl-Ptdlns-anchored proteins from the cell surface. Elucidation of the functional role of glycosyl-phosphoinositides in the generation of second messengers or the release of proteins may provide further insights into the pleiotropic nature of insulin action.


1994 ◽  
Vol 126 (5) ◽  
pp. 1267-1276 ◽  
Author(s):  
G Müller ◽  
E A Dearey ◽  
A Korndörfer ◽  
W Bandlow

Lipoprotein lipase (LPL) and glycolipid-anchored cAMP-binding ectoprotein (Gce1) are modified by glycosyl-phosphatidylinositol (GPI) in rat adipocytes, however, the linkage is potentially unstable. Incubation of the cells with either insulin (0.1-30 nM) or the sulfonylurea, glimepiride (0.5-20 microM), in the presence of glucose led to conversion of up to 35 and 20%, respectively, of the total amphiphilic LPL and Gce1 to their hydrophilic versions. Inositol-phosphate was retained in the residual protein-linked anchor structure. This suggests cleavage of the GPI anchors by an endogenous GPI-specific insulin- and glimepiride-inducible phospholipase (GPI-PL). Despite cleavage, hydrophilic LPL and Gce1 remained membrane associated and were released only if a competitor, e.g., inositol-(cyclic)monophosphate, had been added. Other constituents of the GPI anchor (glucosamine and mannose) were less efficient. This suggests peripheral interaction of lipolytically cleaved LPL and Gce1 with the adipocyte cell surface involving the terminal inositol-(cyclic)monophosphate epitope and presumably a receptor of the adipocyte plasma membrane. In rat adipocytes which were resistant toward glucose transport stimulation by insulin, the sensitivity and responsiveness of GPI-PL to stimulation by insulin was drastically reduced. In contrast, activation of both GPI-PL and glucose transport by the sulfonylurea, glimepiride, was not affected significantly. Inhibition of glucose transport or incubation of rat adipocytes in glucose-free medium completely abolished stimulation of GPI-PL by either insulin or glimepiride. The activation was partially restored by the addition of glucose or nonmetabolizable 2-deoxyglucose. These data suggest that increased glucose transport stimulates a GPI-PL in rat adipocytes.


2015 ◽  
Vol 112 (21) ◽  
pp. E2803-E2812 ◽  
Author(s):  
Igor Cestari ◽  
Ken Stuart

African trypanosomes evade clearance by host antibodies by periodically changing their variant surface glycoprotein (VSG) coat. They transcribe only one VSG gene at a time from 1 of about 20 telomeric expression sites (ESs). They undergo antigenic variation by switching transcription between telomeric ESs or by recombination of the VSG gene expressed. We show that the inositol phosphate (IP) pathway controls transcription of telomeric ESs and VSG antigenic switching in Trypanosoma brucei. Conditional knockdown of phosphatidylinositol 5-kinase (TbPIP5K) or phosphatidylinositol 5-phosphatase (TbPIP5Pase) or overexpression of phospholipase C (TbPLC) derepresses numerous silent ESs in T. brucei bloodstream forms. The derepression is specific to telomeric ESs, and it coincides with an increase in the number of colocalizing telomeric and RNA polymerase I foci in the nucleus. Monoallelic VSG transcription resumes after reexpression of TbPIP5K; however, most of the resultant cells switched the VSG gene expressed. TbPIP5K, TbPLC, their substrates, and products localize to the plasma membrane, whereas TbPIP5Pase localizes to the nucleus proximal to telomeres. TbPIP5Pase associates with repressor/activator protein 1 (TbRAP1), and their telomeric silencing function is altered by TbPIP5K knockdown. These results show that specific steps in the IP pathway control ES transcription and antigenic switching in T. brucei by epigenetic regulation of telomere silencing.


1992 ◽  
Vol 284 (2) ◽  
pp. 297-300 ◽  
Author(s):  
M A J Ferguson

The site of palmitoylation of the phosphatidylinositol moiety of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei procyclic acidic repetitive protein was studied by using periodate oxidation. Analysis of the products by g.c.-m.s. allowed the assignment of 40 and 60% of the palmitate to the 2-position and the 3-position respectively of the myo-inositol ring.


Sign in / Sign up

Export Citation Format

Share Document