protein dephosphorylation
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shiwei Zhong ◽  
Lina Sang ◽  
Zhixia Zhao ◽  
Ying Deng ◽  
Haitao Liu ◽  
...  

Abstract Background Senescence represents the last stage of flower development. Phosphorylation is the key posttranslational modification that regulates protein functions, and kinases may be more required than phosphatases during plant growth and development. However, little is known about global phosphorylation changes during flower senescence. Results In this work, we quantitatively investigated the petunia phosphoproteome following ethylene or air treatment. In total, 2170 phosphosites in 1184 protein groups were identified, among which 2059 sites in 1124 proteins were quantified. To our surprise, treatment with ethylene resulted in 697 downregulated and only 117 upregulated phosphosites using a 1.5-fold threshold (FDR < 0.05), which showed that ethylene negatively regulates global phosphorylation levels and that phosphorylation of many proteins was not necessary during flower senescence. Phosphoproteome analysis showed that ethylene regulates ethylene and ABA signalling transduction pathways via phosphorylation levels. One of the major targets of ethylene-induced dephosphorylation is the plant mRNA splicing machinery, and ethylene treatment increases the number of alternative splicing events of precursor RNAs in petunia corollas. Conclusions Protein dephosphorylation could play an important role in ethylene-induced senescence, and ethylene treatment increased the number of AS precursor RNAs in petunia corollas.


Author(s):  
Wen-Long Lei ◽  
Wei-Ping Qian ◽  
Qing-Yuan Sun

Meiosis is essential to the continuity of life in sexually-reproducing organisms through the formation of haploid gametes. Unlike somatic cells, the germ cells undergo two successive rounds of meiotic divisions after a single cycle of DNA replication, resulting in the decrease in ploidy. In humans, errors in meiotic progression can cause infertility and birth defects. Post-translational modifications, such as phosphorylation, ubiquitylation and sumoylation have emerged as important regulatory events in meiosis. There are dynamic equilibrium of protein phosphorylation and protein dephosphorylation in meiotic cell cycle process, regulated by a conservative series of protein kinases and protein phosphatases. Among these protein phosphatases, PP2A, PP4, and PP6 constitute the PP2A-like subfamily within the serine/threonine protein phosphatase family. Herein, we review recent discoveries and explore the role of PP2A-like protein phosphatases during meiotic progression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Corey H. Yu ◽  
Akash Bhattacharya ◽  
Mirjana Persaud ◽  
Alexander B. Taylor ◽  
Zhonghua Wang ◽  
...  

AbstractSAMHD1 impedes infection of myeloid cells and resting T lymphocytes by retroviruses, and the enzymatic activity of the protein—dephosphorylation of deoxynucleotide triphosphates (dNTPs)—implicates enzymatic dNTP depletion in innate antiviral immunity. Here we show that the allosteric binding sites of the enzyme are plastic and can accommodate oligonucleotides in place of the allosteric activators, GTP and dNTP. SAMHD1 displays a preference for oligonucleotides containing phosphorothioate bonds in the Rp configuration located 3’ to G nucleotides (GpsN), the modification pattern that occurs in a mechanism of antiviral defense in prokaryotes. In the presence of GTP and dNTPs, binding of GpsN-containing oligonucleotides promotes formation of a distinct tetramer with mixed occupancy of the allosteric sites. Mutations that impair formation of the mixed-occupancy complex abolish the antiretroviral activity of SAMHD1, but not its ability to deplete dNTPs. The findings link nucleic acid binding to the antiretroviral activity of SAMHD1, shed light on the immunomodulatory effects of synthetic phosphorothioated oligonucleotides and raise questions about the role of nucleic acid phosphorothioation in human innate immunity.


Author(s):  
Wei Wei ◽  
Lili Xue ◽  
Liangyu Tan ◽  
Jie Liu ◽  
Qin Yang ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
James Holder ◽  
Shabaz Mohammed ◽  
Francis A Barr

APC/C-mediated proteolysis of cyclin B and securin promotes anaphase entry, inactivating CDK1 and permitting chromosome segregation, respectively. Reduction of CDK1 activity relieves inhibition of the CDK1-counteracting phosphatases PP1 and PP2A-B55, allowing wide-spread dephosphorylation of substrates. Meanwhile, continued APC/C activity promotes proteolysis of other mitotic regulators. Together, these activities orchestrate a complex series of events during mitotic exit. However, the relative importance of regulated proteolysis and dephosphorylation in dictating the order and timing of these events remains unclear. Using high temporal-resolution proteomics, we compare the relative extent of proteolysis and protein dephosphorylation. This reveals highly-selective rapid proteolysis of cyclin B, securin and geminin at the metaphase-anaphase transition, followed by slow proteolysis of other substrates. Dephosphorylation requires APC/C-dependent destruction of cyclin B and was resolved into PP1-dependent categories with unique sequence motifs. We conclude that dephosphorylation initiated by selective proteolysis of cyclin B drives the bulk of changes observed during mitotic exit.


2020 ◽  
Vol 16 (7) ◽  
pp. e1008669 ◽  
Author(s):  
Zhanying Hu ◽  
Haiqun Ban ◽  
Haiyan Zheng ◽  
Mingliang Liu ◽  
Jinhong Chang ◽  
...  

2020 ◽  
Author(s):  
James Holder ◽  
Shabaz Mohammed ◽  
Francis A. Barr

ABSTRACTAPC/C-mediated proteolysis of cyclin B and securin promotes entry into anaphase, inactivating CDK1 and permitting chromosome segregation, respectively. Reduction of CDK1 activity relieves inhibition of the CDK1-opposing phosphatases PP1 and PP2A-B55 leading to dephosphorylation of substrates crucial for mitotic exit. Meanwhile, continued APC/C activity is required to target various proteins, including Aurora and Polo kinases, for degradation. Together, these activities orchestrate a complex series of events during mitotic exit. However, the relative importance of regulated proteolysis and dephosphorylation in dictating the order and timing of these events remains unclear. Using high temporal-resolution mass spectrometry, we compare the relative extent of proteolysis and protein dephosphorylation. This reveals highly-selective rapid (∼5min half-life) proteolysis of cyclin B, securin and geminin at the metaphase to anaphase transition, followed by slow proteolysis (>60 min half-life) of other mitotic regulators. Protein dephosphorylation requires APC/C-dependent destruction of cyclin B and was resolved into PP1-dependent fast, intermediate and slow categories with unique sequence motifs. We conclude that dephosphorylation initiated by the selective proteolysis of cyclin B drives the bulk of changes observed during mitotic exit.


2020 ◽  
Vol 21 (2) ◽  
pp. 446 ◽  
Author(s):  
Adrián Campos ◽  
Andrés Clemente-Blanco

Cells are constantly suffering genotoxic stresses that affect the integrity of our genetic material. Genotoxic insults must be repaired to avoid the loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental abnormalities and tumorigenesis. To combat this threat, eukaryotic cells have evolved a set of sophisticated molecular mechanisms that are collectively known as the DNA damage response (DDR). This surveillance system controls several aspects of the cellular response, including the detection of lesions, a temporary cell cycle arrest, and the repair of the broken DNA. While the regulation of the DDR by numerous kinases has been well documented over the last decade, the complex roles of protein dephosphorylation have only recently begun to be investigated. Here, we review recent progress in the characterization of DDR-related protein phosphatases during the response to a DNA lesion, focusing mainly on their ability to modulate the DNA damage checkpoint and the repair of the damaged DNA. We also discuss their protein composition and structure, target specificity, and biochemical regulation along the different stages encompassed in the DDR. The compilation of this information will allow us to better comprehend the physiological significance of protein dephosphorylation in the maintenance of genome integrity and cell viability in response to genotoxic stress.


Sign in / Sign up

Export Citation Format

Share Document