scholarly journals Increased Pancreatic Islet Blood Flow in 48-Hour Glucose-Infused Rats: Involvement of Central and Autonomic Nervous Systems*

Endocrinology ◽  
1997 ◽  
Vol 138 (5) ◽  
pp. 1836-1840 ◽  
Author(s):  
Nadia Atef ◽  
Marie-Claude Laury ◽  
Jean-Michel N’Guyen ◽  
Najad Mokhtar ◽  
Alain Ktorza ◽  
...  

Abstract The pancreatic islet blood flow of rats 24 h after a prolonged (48-h) glucose infusion was investigated using a nonradioactive microsphere technique. In the basal state, islet blood flow was significantly increased in previously hyperglycemic rats (HG) compared to that in controls (C). During an iv glucose challenge, both plasma insulin and islet blood flow were increased in the two groups, but these increases were significantly higher in HG than in C rats. Although less pronounced, the results were similar when glucose was injected into the carotid artery toward the brain at a dose that did not modify the peripheral glucose level. The effect of this intracarotid injection was abolished after bilateral subdiaphragmatic vagotomy in both C and HG rats. Furthermore, in the latter group, both plasma insulin concentration and islet blood flow returned to values similar to those observed in the basal state in C rats. After pretreatment with the α2-adrenoceptor agonist clonidine, the insulin response to the intracarotid glucose load was totally blunted in the two groups of rats. By contrast, whereas such a pretreatment lowered the glucose-induced increase in islet blood flow in C rats, it was without effect in HG rats. These data suggest that a period of hyperglycemia and/or hyperinsulinemia is sufficient to induce a perturbation of pancreatic islet blood flow, which appears to be mainly due to an increased parasympathetic activity, whereas the decrease in sympathetic tone does not play a role. These modifications in autonomic nervous system activity could be due to alterations in some brain areas involved in “glucose sensing.”

1996 ◽  
Vol 298 (3) ◽  
pp. 287-292 ◽  
Author(s):  
Nadia Atef ◽  
Max Lafontan ◽  
Alexandre Double ◽  
Christophe Hélary ◽  
Alain Ktorza ◽  
...  

2021 ◽  
Author(s):  
Alejandro Tamayo ◽  
Luciana Mateus Goncalves ◽  
Rayner Rodriguez-Diaz ◽  
Elizabeth Pereira ◽  
Melissa Canales ◽  
...  

The pancreatic islet depends on blood supply to efficiently sense plasma glucose levels and deliver insulin and glucagon into the circulation. Long thought to be passive conduits of nutrients and hormones, islet capillaries were recently found to be densely covered with contractile pericytes, suggesting local control of blood flow. Here we determined the contribution of islet pericytes to the regulation of islet blood flow, plasma insulin and glucagon levels, and glycemia. Selective optogenetic activation of pericytes in intraocular islet grafts contracted capillaries and diminished blood flow. In awake mice, acute clamping of islet blood flow by optogenetic or pharmacological activation of pericytes disrupted hormonal responses, glycemia, and glucose tolerance. Our findings indicate that pericytes mediate vascular responses in the islet that are required for adequate hormone secretion and glucose homeostasis. Vascular deficiencies commonly seen in the islets of people with type 2 diabetes may impair regulation of islet blood flow and thus precipitate islet dysfunction.


2014 ◽  
Vol 307 (8) ◽  
pp. E653-E663 ◽  
Author(s):  
Enyin Lai ◽  
Ulrika Pettersson ◽  
Alberto Delgado Verdugo ◽  
Per-Ola Carlsson ◽  
Birgitta Bodin ◽  
...  

Pancreatic islet blood perfusion varies according to the needs for insulin secretion. We examined the effects of blood lipids on pancreatic islet blood flow in anesthetized rats. Acute administration of Intralipid to anesthetized rats increased both triglycerides and free fatty acids, associated with a simultaneous increase in total pancreatic and islet blood flow. A preceding abdominal vagotomy markedly potentiated this and led acutely to a 10-fold increase in islet blood flow associated with a similar increase in serum insulin concentrations. The islet blood flow and serum insulin response could be largely prevented by pretreatment with propranolol and the selective β3-adrenergic inhibitor SR-59230A. The nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester prevented the blood flow increase but was less effective in reducing serum insulin. Increased islet blood flow after Intralipid administration was also seen in islet and whole pancreas transplanted rats, i.e., models with different degrees of chronic islet denervation, but the effect was not as pronounced. In isolated vascularly perfused single islets Intralipid dilated islet arterioles, but this was not affected by SR-59230A. Both the sympathetic and parasympathetic nervous system are important for the coordination of islet blood flow and insulin release during hyperlipidemia, with a previously unknown role for β3-adrenoceptors.


2007 ◽  
Vol 292 (6) ◽  
pp. E1616-E1623 ◽  
Author(s):  
En Yin Lai ◽  
A. Erik G. Persson ◽  
Birgitta Bodin ◽  
Örjan Källskog ◽  
Arne Andersson ◽  
...  

Endothelin-1 (ET-1) is a potent endothelium-derived vasoconstrictor, which also stimulates insulin release. The aim of the present study was to evaluate whether exogenously administered ET-1 affected pancreatic islet blood flow in vivo in rats and the islet arteriolar reactivity in vitro in mice. Furthermore, we aimed to determine the ET-receptor subtype that was involved in such responses. When applying a microsphere technique for measurements of islet blood perfusion in vivo, we found that ET-1 (5 nmol/kg) consistently and markedly decreased total pancreatic and especially islet blood flow, despite having only minor effects on blood pressure. Neither endothelin A (ETA) receptor (BQ-123) nor endothelin-B (ETB) receptor (BQ-788) antagonists, alone or in combination, could prevent this reduction in blood flow. To avoid confounding interactions in vivo, we also examined the arteriolar vascular reactivity in isolated, perfused mouse islets. In the latter preparation, we demonstrated a dose-dependent constriction in response to ET-1. Administration of BQ-123 prevented this, whereas BQ-788 induced a right shift in the response. In conclusion, the pancreatic islet vasculature is highly sensitive to exogenous ET-1, which mediates its effect mainly through ETA receptors.


2005 ◽  
Vol 153 (2) ◽  
pp. 345-351 ◽  
Author(s):  
Leif Jansson ◽  
Birgitta Bodin ◽  
Örjan Källskog ◽  
Arne Andersson

Objectives: The aim of this study was to evaluate islet blood-flow changes during stimulated growth of the islet organ without any associated functional impairment of islet function. Design: A duct ligation encompassing the distal two-thirds of the pancreas was performed in adult, male Sprague–Dawley rats. Methods: Pancreatic islet blood flow was measured in duct-ligated and sham-operated rats 1, 2 or 4 weeks after surgery. In some animals studied 4 weeks after surgery, islet blood flow was also measured also during hyperglycaemic conditions. Results: A marked atrophy of the exocrine pancreas was seen in all duct-ligated rats. Blood glucose and serum insulin concentrations were normal. An increased islet mass was only seen 4 weeks after surgery. No differences in islet blood perfusion were noted at any time point after duct ligation. In both sham-operated and duct-ligated rats islet blood flow was increased during hyperglycaemia; the response was, however, slightly more pronounced in the duct-ligated part of the gland. Conclusions: Normal, physiological islet growth does not cause any major changes in the islet blood perfusion or its regulation. This is in contrast to findings during increased functional demands on the islets or during deteriorated islet function, when increased islet blood flow is consistently seen.


1992 ◽  
Vol 262 (5) ◽  
pp. E736-E740 ◽  
Author(s):  
N. Atef ◽  
A. Ktorza ◽  
L. Picon ◽  
L. Penicaud

Hyperinsulinemia, a main feature of both human and animal obesity, has been demonstrated to be due to both an increased sensitivity to nutrient secretagogues and an impairment of the nervous regulation of insulin secretion. Recent studies have shown that pancreatic islet blood flow increases under conditions associated with an enhanced insulin secretion. The aim of this study was to determine whether or not changes in islet blood flow are present in hyperinsulinemic obese rats. Using the nonradioactive microsphere technique, we were able to show a significantly higher islet blood flow in obese rats either of the Zucker strain or Wistar rats after lesion of the ventromedial hypothalamus than in their respective lean controls. Subdiaphragmatic vagotomy had no significant effect on basal islet blood flow of lean rats, whereas it decreased significantly that of obese Zucker rats. Conversely, clonidine, an alpha 2-adrenergic agonist, induced a higher decrease of islet blood flow in obese than in lean Zucker rats. The injection of an intravenous bolus of glucose (375 mg/kg iv) increased significantly more islet blood flow in obese than in lean Zucker rats. It is concluded that obese rats present an increased pancreatic islet blood flow, which may result, at least in part, from exaggerated parasympathetic activity and lower than normal sympathetic activity. This could participate in the hyperinsulinemia observed in these rats.


Sign in / Sign up

Export Citation Format

Share Document