islet mass
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 29)

H-INDEX

29
(FIVE YEARS 3)

Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4552
Author(s):  
Yi-Zhen Tsai ◽  
Mei-Ling Tsai ◽  
Li-Yin Hsu ◽  
Chi-Tang Ho ◽  
Ching-Shu Lai

Impairment of adiponectin production and function is closely associated with insulin resistance and type 2 diabetes, which are linked to obesity. Studies in animal models have documented the anti-diabetic effects of tetrahydrocurcumin (THC). Although several possible mechanisms have been proposed, the contribution of adiponectin signaling on THC-mediated antihyperglycemic effects remains unknown. Here, we report that adiposity, steatosis, and hyperglycemia were potently attenuated in high-fat diet/streptozotocin-induced diabetic obese mice after they received 20 and 100 mg/kg THC for 14 weeks. THC upregulated UCP-1 in adipose tissue and elevated adiponectin levels in the circulation. THC upregulated the AdipoR1/R2-APPL1-mediated pathway in the liver and skeletal muscle, which contributes to improved insulin signaling, glucose utilization, and lipid metabolism. Furthermore, THC treatment significantly (p < 0.05) preserved islet mass, reduced apoptosis, and restored defective insulin expression in the pancreatic β-cells of diabetic obese mice, which was accompanied by an elevation of AdipoR1 and APPL1. These results demonstrated a potential mechanism underlying the beneficial effects of THC against hyperglycemia via the adiponectin-AdipoR pathway, and thus, may lead to a novel therapeutic use for type 2 diabetes.


2021 ◽  
Author(s):  
Yan Cao ◽  
Zijie Feng ◽  
Xin He ◽  
Xuyao Zhang ◽  
Bowen Xing ◽  
...  

Gestational diabetes mellitus(GDM) is a condition of glucose intolerance of glucose intolerance with onset or first recognition in pregnancy. Its incidence is increasing and GDM deleteriously affects both mother and fetus during and even after pregnancy. Previous studies in mice have shown that during pregnancy, β cell proliferation increases during pregnancy and return to normal levels after delivery. Hormones as well as protein kinases, play important roles in regulating gestation-mediated β cell proliferation, however the regulatory relationship between them are uncertain. We previously found that protein kinase Pbk was crucial for basal proliferation of mouse islet cells. Herein we show that Pbk is upregulated during pregnancy in mice and Pbk kinase activity is required for enhanced β cell proliferation during pregnancy. Notably, knock-in (KI) of a kinase-inactivating Pbk mutation leads to impaired glucose tolerance, and reduction of β cell proliferation and islet mass in mice during pregnancy. Prolactin upregulates the expression of Pbk, but the upregulation is diminished by knockdown of the prolactin receptor and by the inhibitors of JAK and STAT5, which mediate prolactin receptor signaling, in β cells. Treatment of β cells with prolactin increases STAT5 binding to the Pbk locus, as well as the recruitment of RNA polymerase II, resulting in increased Pbk transcription. These results demonstrate that Pbk is upregulated during pregnancy, at least partly by prolactin induced and STAT5-mediated enhancement of gene transcription, and Pbk is essential for pregnancy-induced β cell proliferation in preclinical models. These findings provide new insights into the interplay between hormones and protein kinases that ultimately prevent the development of GDM.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Max Hahn ◽  
Christoffer Nord ◽  
Maria Eriksson ◽  
Federico Morini ◽  
Tomas Alanentalo ◽  
...  

AbstractThe possibility to quantitatively study specific molecular/cellular features of complete human organs with preserved spatial 3D context would have widespread implications for pre-clinical and clinical medicine. Whereas optical 3D imaging approaches have experienced a formidable revolution, they have remained limited due to current incapacities in obtaining specific labelling within large tissue volumes. We present a simple approach enabling reconstruction of antibody labeled cells within entire human organs with preserved organ context. We demonstrate the utility of the approach by providing volumetric data and 3D distribution of hundreds of thousands of islets of Langerhans within the human pancreas. By assessments of pancreata from non-diabetic and type 2 diabetic individuals, we display previously unrecognized features of the human islet mass distribution and pathology. As such, this method may contribute not only in unraveling new information of the pancreatic anatomy/pathophysiology, but it may be translated to essentially any antibody marker or organ system.


2021 ◽  
Author(s):  
Haopeng Lin ◽  
Nancy Smith ◽  
Aliya F Spigelman ◽  
Kunimasa Suzuki ◽  
Mourad Ferdaoussi ◽  
...  

SUMOylation reduces oxidative stress and preserves islet mass at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme <u>sen</u>trin-specific <u>p</u>rotease <u>1</u> (SENP1) following metabolic stress, we put pancreas/gut-specific SENP1 knockout mice (pSENP1-KO) on a high fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls, but only in response to oral glucose. A similar phenotype was observed in females. Plasma glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like-peptide 1 (GLP-1) responses were identical in pSENP1-KO and -WT littermates, including the HFD-induced upregulation of GIP responses. Islet mass was not different, but insulin secretion and β-cell exocytotic responses to the GLP-1 receptor agonist Exendin-4 (Ex4) and GIP were impaired in islets lacking SENP1. Glucagon secretion from pSENP1-KO islets was also reduced, so we generated β-cell-specific SENP1 knockout mice (βSENP1-KO). These phenocopied the pSENP1-KO mice with selective impairment in oral glucose tolerance following HFD, preserved islet mass expansion, and impaired β-cell exocytosis and insulin secretion to Ex4 and GIP without changes in cAMP or Ca<sup>2+</sup> levels. Thus, β-cell SENP1 limits oral glucose intolerance following HFD by ensuring robust insulin secretion at a point downstream of incretin signaling.


2021 ◽  
Author(s):  
Haopeng Lin ◽  
Nancy Smith ◽  
Aliya F Spigelman ◽  
Kunimasa Suzuki ◽  
Mourad Ferdaoussi ◽  
...  

SUMOylation reduces oxidative stress and preserves islet mass at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme <u>sen</u>trin-specific <u>p</u>rotease <u>1</u> (SENP1) following metabolic stress, we put pancreas/gut-specific SENP1 knockout mice (pSENP1-KO) on a high fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls, but only in response to oral glucose. A similar phenotype was observed in females. Plasma glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like-peptide 1 (GLP-1) responses were identical in pSENP1-KO and -WT littermates, including the HFD-induced upregulation of GIP responses. Islet mass was not different, but insulin secretion and β-cell exocytotic responses to the GLP-1 receptor agonist Exendin-4 (Ex4) and GIP were impaired in islets lacking SENP1. Glucagon secretion from pSENP1-KO islets was also reduced, so we generated β-cell-specific SENP1 knockout mice (βSENP1-KO). These phenocopied the pSENP1-KO mice with selective impairment in oral glucose tolerance following HFD, preserved islet mass expansion, and impaired β-cell exocytosis and insulin secretion to Ex4 and GIP without changes in cAMP or Ca<sup>2+</sup> levels. Thus, β-cell SENP1 limits oral glucose intolerance following HFD by ensuring robust insulin secretion at a point downstream of incretin signaling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander J. Dwyer ◽  
Jacob M. Ritz ◽  
Jason S. Mitchell ◽  
Tijana Martinov ◽  
Mohannad Alkhatib ◽  
...  

AbstractThe notion that T cell insulitis increases as type 1 diabetes (T1D) develops is unsurprising, however, the quantitative analysis of CD4+ and CD8+ T cells within the islet mass is complex and limited with standard approaches. Optical microscopy is an important and widely used method to evaluate immune cell infiltration into pancreatic islets of Langerhans for the study of disease progression or therapeutic efficacy in murine T1D. However, the accuracy of this approach is often limited by subjective and potentially biased qualitative assessment of immune cell subsets. In addition, attempts at quantitative measurements require significant time for manual analysis and often involve sophisticated and expensive imaging software. In this study, we developed and illustrate here a streamlined analytical strategy for the rapid, automated and unbiased investigation of islet area and immune cell infiltration within (insulitis) and around (peri-insulitis) pancreatic islets. To this end, we demonstrate swift and accurate detection of islet borders by modeling cross-sectional islet areas with convex polygons (convex hulls) surrounding islet-associated insulin-producing β cell and glucagon-producing α cell fluorescent signals. To accomplish this, we used a macro produced with the freeware software ImageJ equipped with the Fiji Is Just ImageJ (FIJI) image processing package. Our image analysis procedure allows for direct quantification and statistical determination of islet area and infiltration in a reproducible manner, with location-specific data that more accurately reflect islet areas as insulitis proceeds throughout T1D. Using this approach, we quantified the islet area infiltrated with CD4+ and CD8+ T cells allowing statistical comparison between different age groups of non-obese diabetic (NOD) mice progressing towards T1D. We found significantly more CD4+ and CD8+ T cells infiltrating the convex hull-defined islet mass of 13-week-old non-diabetic and 17-week-old diabetic NOD mice compared to 4-week-old NOD mice. We also determined a significant and measurable loss of islet mass in mice that developed T1D. This approach will be helpful for the location-dependent quantitative calculation of islet mass and cellular infiltration during T1D pathogenesis and can be combined with other markers of inflammation or activation in future studies.


Author(s):  
Shareen Forbes ◽  
Anneliese J. Flatt ◽  
Denise Bennett ◽  
Robert Crookston ◽  
Mirka Pimkova ◽  
...  

Author(s):  
Xiaoyu Yu ◽  
Pu Zhang ◽  
Yi He ◽  
Emily Lin ◽  
Huiwang Ai ◽  
...  

Islet beta-cell viability, function, and mass are three decisive attributes that determine the efficacy of human islet transplantation for type 1 diabetes mellitus (T1DM) patients. Islet mass is commonly assessed manually, which often leads to error and bias. Digital imaging analysis (DIA) system has shown its potential as an alternative, but it has some associated limitations. In this study, a Smartphone-Fluidic Digital Imaging Analysis (SFDIA) System, which incorporates microfluidic techniques and Python-based video processing software, was developed for islet mass assessment. We quantified islets by tracking multiple moving islets in a microfluidic channel using the SFDIA system, and we achieved a relatively consistent result. The counts from the SFDIA and manual counting showed an average difference of 2.91 ± 1.50%. Furthermore, our software can analyze and extract key human islet mass parameters, including quantity, size, volume, IEq, morphology, and purity, which are not fully obtainable from traditional manual counting methods. Using SFDIA on a representative islet sample, we measured an average diameter of 99.88 ± 53.91 µm, an average circularity of 0.591 ± 0.133, and an average solidity of 0.853 ± 0.107. Via analysis of dithizone-stained islets using SFDIA, we found that a higher islet tissue percentage is associated with top-layer islets as opposed to middle-layer islets (0.735 ± 0.213 and 0.576 ± 0.223, respectively). Our results indicate that the SFDIA system can potentially be used as a multi-parameter islet mass assay that is superior in accuracy and consistency, when compared to conventional manual techniques.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
María Lasierra Losada ◽  
Melissa Pauler ◽  
Niels Vandamme ◽  
Steven Goossens ◽  
Geert Berx ◽  
...  

AbstractThe pancreas is comprised of exocrine and endocrine compartments releasing digestive enzymes into the duodenum and regulating blood glucose levels by insulin and glucagon release. Tissue homeostasis is depending on transcription factor networks, involving Ptf1α, Ngn3, Nkx6.1, and Sox9, which are already activated during organogenesis. However, proper organ function is challenged by diets of high sugar and fat content, increasing the risk of type 2 diabetes and other disorders. A detailed understanding of processes that are important for homeostasis and are impaired during type 2 diabetes is lacking. Here, we show that Zeb1—a transcription factor known for its pivotal role in epithelial-mesenchymal transition, cell plasticity, and metastasis in cancer—is expressed at low levels in epithelial cells of the pancreas and is crucial for organogenesis and pancreas function. Loss of Zeb1 in these cells result in an increase of islet mass, impaired glucose tolerance, and sensitizes to develop liver and pancreas steatosis during diabetes and obesity. Interestingly, moderate overexpression of Zeb1 results in severe pancreas agenesis and lethality after birth, due to islet insufficiency and lack of acinar structures. We show that Zeb1 induction interferes with proper differentiation, cell survival, and proliferation during pancreas formation, due to deregulated expression of endocrine-specific transcription factors. In summary, our analysis suggests a novel role of Zeb1 for homeostasis in epithelial cells that is indispensable for pancreas morphogenesis and proper organ function involving a tight regulation of Zeb1 expression.


Sign in / Sign up

Export Citation Format

Share Document