scholarly journals Two Novel MicroRNA Biomarkers Related to β-Cell Damage and Their Potential Values for Early Diagnosis of Type 1 Diabetes

2018 ◽  
Vol 103 (4) ◽  
pp. 1320-1329 ◽  
Author(s):  
Li Liu ◽  
Jinhua Yan ◽  
Haixia Xu ◽  
Yunxia Zhu ◽  
Hua Liang ◽  
...  

Abstract Context New strategies and biomarkers are needed in the early detection of β-cell damage in the progress of type 1 diabetes mellitus (T1DM). Objective To explore whether serum microRNAs (miRNA) should be served as biomarkers for T1DM. Design, Settings, and Patients The miRNA profile was established with miRNA microarray in discovery phase (six T1DM, six controls). A miRNA-based model for T1DM diagnosis was developed using logistic regression analysis in the training dataset (40 T1DM, 56 controls) and then validated with leave-one-out cross validation and another independent validation dataset (33 T1DM, 29 controls). Main Outcome Measures Quantitative reverse transcription polymerase chain reaction was applied to confirm the differences of candidate miRNAs between T1DM and controls. Area under the receiver-operating characteristic (ROC) curve (AUC) was used to evaluate diagnostic accuracy. INS-1 cells, streptozotocin-treated mice (n = 4), and nonobese diabetic (NOD) mice (n = 12) were used to evaluate the association of miRNAs with β-cell damage. Results A miRNA -based model was established in the training dataset with high diagnostic accuracy for T1DM (AUC = 0.817) based on six candidate differential expressed miRNAs identified in discovery phase. The validation dataset showed the model’s satisfactory diagnostic performance (AUC = 0.804). Secretions of miR-1225-5p and miR-320c were significantly increased in streptozotocin-treated mice and INS-1 cells. Noteworthy, the elevation of these two miRNAs was observed before glucose elevation in the progress of diabetes in NOD mice. Conclusions Two miRNA biomarkers (miR-1225-5p and miR-320c) related to β-cell damage were identified in patients with recent-onset T1DM. The miRNA-based model established in this study exhibited a good performance in diagnosis of T1DM.

2010 ◽  
Vol 34 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Christian Pfleger ◽  
Guido Meierhoff ◽  
Hubert Kolb ◽  
Nanette C. Schloot

2017 ◽  
Vol 34 (11) ◽  
pp. 1521-1531 ◽  
Author(s):  
P. Narendran ◽  
N. Jackson ◽  
A. Daley ◽  
D. Thompson ◽  
K. Stokes ◽  
...  

2020 ◽  
Author(s):  
Ada Admin ◽  
Geming Lu ◽  
Francisco Rausell-Palamos ◽  
Jiamin Zhang ◽  
Zihan Zheng ◽  
...  

A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties <i>in vitro</i>. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity <i>in vitro</i>. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-γ+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D.


2020 ◽  
Author(s):  
David G. Ramirez ◽  
Awaneesh K. Upadhyay ◽  
Vinh T. Pham ◽  
Mark Ciccaglione ◽  
Mark A Borden ◽  
...  

AbstractType 1 diabetes (T1D) results from immune infiltration and destruction of insulin-producing β-cells within the pancreatic islets of Langerhans (insulitis), resulting in loss of glucose homeostasis. Early diagnosis during pre-symptomatic T1D would allow for therapeutic intervention prior to substantial loss of β-cell mass at T1D onset. There are limited methods to track the progression of insulitis and β-cell mass decline in pre-symptomatic T1D. During insulitis, the islet microvasculature increases permeability, such that sub-micron sized particles can extravasate and accumulate within the islet microenvironment. Ultrasound is a widely deployable and cost-effective clinical imaging modality. However, conventional microbubble contrast agents are restricted to the vasculature. Sub-micron sized nanodroplet (ND) phasechange agents can be vaporized into micron-sized bubbles; serving as a circulating microbubble precursor. We tested if NDs extravasate into the immune-infiltrated islet microenvironment. We performed ultrasound contrast-imaging following ND infusion in NOD mice and NOD;Rag1ko controls, and tracked diabetes development. We measured the biodistribution of fluorescently labeled NDs, with histological analysis of insulitis. Ultrasound contrast signal was elevated in the pancreas of 10w NOD mice following ND infusion and vaporization, but was absent in both the non-infiltrated kidney of NOD mice and pancreas of Rag1ko controls. High contrast elevation also correlated with rapid diabetes onset. In pancreata of NOD mice, infiltrated islets and nearby exocrine tissue were selectively labeled with fluorescent NDs. Thus, contrast ultrasound imaging with ND phase-change agents can detect insulitis prior to diabetes onset. This will be important for monitoring disease progression to guide and assess preventative therapeutic interventions for T1D.SignificanceThere is a need for imaging methods to detect type1 diabetes (T1D) progression prior to clinical diagnosis. T1D is a chronic disease that results from autoreactive T cells infiltrating the islet of Langerhans and destroying insulin-producing β-cells. Overt disease takes years to present and is only diagnosed after significant β-cells loss. As such, the possibility of therapeutic intervention to preserve β-cell mass is hampered by an inability to follow pre-symptomatic T1D progression. There are immunotherapies that can delay T1D development. However identifying ‘at risk’ individuals, and tracking whether therapeutic interventions are impacting disease progression, prior to T1D onset, is lacking. A method to detect insulitis and β-cell mass decline would present an opportunity to guide therapeutic treatments to prevent T1D.


2020 ◽  
Author(s):  
Ada Admin ◽  
Geming Lu ◽  
Francisco Rausell-Palamos ◽  
Jiamin Zhang ◽  
Zihan Zheng ◽  
...  

A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties <i>in vitro</i>. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity <i>in vitro</i>. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-γ+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D.


2019 ◽  
Vol 20 (23) ◽  
pp. 6032 ◽  
Author(s):  
Lebenthal ◽  
Brener ◽  
Hershkovitz ◽  
Shehadeh ◽  
Shalitin ◽  
...  

Our aim was to assess the efficacy, safety, and tolerability of alpha-1 antitrypsin (AAT) as a therapeutic modality for β-cell preservation in patients with recent-onset type 1 diabetes. Seventy type 1 diabetes patients (37 males; mean age 13.1 ± 4.1years) were randomized to treatment with 22 infusions of AAT (Glassia®) (60 or 120 mg/kg) or placebo. The primary outcome was the area under the curve (AUC) of C-peptide from a 2-h mixed-meal tolerance test after 52 weeks. At week 52, C-peptide was 0.9, 0.45, and 0.48 pmol/mL in the AAT-120, AAT-60, and placebo groups (p = 0.170 and p = 0.866 vs. placebo, respectively). The declines in C-peptide glycated hemoglobin (HbA1c) and the total insulin dose (U/kg) were similar across groups. Within the predefined 12–18-years subgroup, the C-peptide AUC decreased significantly in the placebo and AAT-60 groups (−0.34 and −0.54 pmol/mL, respectively, p < 0.01), with a borderline decrease in the AAT-120 group (−0.29 pmol/mL, p = 0.047). The mean HbA1c level was significantly lower in the AAT-120 group compared to the placebo (6.7% ± 0.9% vs. 8.2 ± 1.4%, p = 0.05), and a higher percentage of patients attained HbA1c ≤ 7% (75% vs. 25%, p = 0.05). AAT was tolerated well, with a similar safety profile between groups. The AAT intervention showed promise in the subgroup of adolescents with recent-onset type 1 diabetes. Further studies are warranted to determine the impact and proposed mechanism of action of AAT in β-cell preservation.


2007 ◽  
Vol 77 (3) ◽  
pp. 494-495 ◽  
Author(s):  
Rajendra P. Agrawal ◽  
Sanjay Saran ◽  
Poornima Sharma ◽  
Rajendra P. Gupta ◽  
Dhanpat K. Kochar ◽  
...  

2013 ◽  
Vol 30 (2) ◽  
pp. 147-154 ◽  
Author(s):  
M. Peakman
Keyword(s):  

2010 ◽  
Vol 40 (12) ◽  
pp. 3413-3425 ◽  
Author(s):  
Selwyn Lewis Cox ◽  
Jessica Stolp ◽  
Nicole L. Hallahan ◽  
Jacqueline Counotte ◽  
Wenyu Zhang ◽  
...  

2003 ◽  
Vol 198 (7) ◽  
pp. 1103-1106 ◽  
Author(s):  
Irina Apostolou ◽  
Zhenyue Hao ◽  
Klaus Rajewsky ◽  
Harald von Boehmer

In type 1 diabetes, autoimmune T cells cause destruction of pancreatic β cells by largely unknown mechanism. Previous analyses have shown that β cell destruction is delayed but can occur in perforin-deficient nonobese diabetic (NOD) mice and that Fas-deficient NOD mice do not develop diabetes. However, because of possible pleiotropic functions of Fas, it was not clear whether the Fas receptor was an essential mediator of β cell death in type 1 diabetes. To directly test this hypothesis, we have generated a β cell–specific knockout of the Fas gene in a transgenic model of type 1 autoimmune diabetes in which CD4+ T cells with a transgenic TCR specific for influenza hemagglutinin (HA) are causing diabetes in mice that express HA under control of the rat insulin promoter. Here we show that the Fas-deficient mice develop autoimmune diabetes with slightly accelerated kinetics indicating that Fas-dependent apoptosis of β cells is a dispensable mode of cell death in this disease.


Sign in / Sign up

Export Citation Format

Share Document