pancreatic β cells
Recently Published Documents


TOTAL DOCUMENTS

2418
(FIVE YEARS 465)

H-INDEX

104
(FIVE YEARS 10)

2022 ◽  
Vol 146 ◽  
pp. 112494
Author(s):  
Phutthida Kongthitilerd ◽  
Thavaree Thilavech ◽  
Marisa Marnpae ◽  
Weiqiong Rong ◽  
Shaomian Yao ◽  
...  

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 291
Author(s):  
Florine Bornaque ◽  
Clément Philippe Delannoy ◽  
Emilie Courty ◽  
Nabil Rabhi ◽  
Charlène Carney ◽  
...  

Type 2 diabetes is characterized by chronic hyperglycemia associated with impaired insulin action and secretion. Although the heritability of type 2 diabetes is high, the environment, including blood components, could play a major role in the development of the disease. Amongst environmental effects, epitranscriptomic modifications have been recently shown to affect gene expression and glucose homeostasis. The epitranscriptome is characterized by reversible chemical changes in RNA, with one of the most prevalent being the m6A methylation of RNA. Since pancreatic β cells fine tune glucose levels and play a major role in type 2 diabetes physiopathology, we hypothesized that the environment, through variations in blood glucose or blood free fatty acid concentrations, could induce changes in m6A methylation of RNAs in pancreatic β cells. Here we observe a significant decrease in m6A methylation upon high glucose concentration, both in mice and human islets, associated with altered expression levels of m6A demethylases. In addition, the use of siRNA and/or specific inhibitors against selected m6A enzymes demonstrate that these enzymes modulate the expression of genes involved in pancreatic β-cell identity and glucose-stimulated insulin secretion. Our data suggest that environmental variations, such as glucose, control m6A methylation in pancreatic β cells, playing a key role in the control of gene expression and pancreatic β-cell functions. Our results highlight novel causes and new mechanisms potentially involved in type 2 diabetes physiopathology and may contribute to a better understanding of the etiology of this disease.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Yaser Albadr ◽  
Andrew Crowe ◽  
Rima Caccetta

The prevalence of type 2 diabetes mellitus is rising globally and this disease is proposed to be the next pandemic after COVID-19. Although the cause of type 2 diabetes mellitus is unknown, it is believed to involve a complex array of genetic defects that affect metabolic pathways which eventually lead to hyperglycaemia. This hyperglycaemia arises from an inability of the insulin-sensitive cells to sufficiently respond to the secreted insulin, which eventually results in the inadequate secretion of insulin from pancreatic β-cells. Several treatments, utilising a variety of mechanisms, are available for type 2 diabetes mellitus. However, more medications are needed to assist with the optimal management of the different stages of the disease in patients of varying ages with the diverse combinations of other medications co-administered. Throughout modern history, some lead constituents from ancient medicinal plants have been investigated extensively and helped in developing synthetic antidiabetic drugs, such as metformin. Teucrium polium L. (Tp) is a herb that has a folk reputation for its antidiabetic potential. Previous studies indicate that Tp extracts significantly decrease blood glucose levels r and induce insulin secretion from pancreatic β-cells in vitro. Nonetheless, the constituent/s responsible for this action have not yet been elucidated. The effects appear to be, at least in part, attributable to the presence of selected flavonoids (apigenin, quercetin, and rutin). This review aims to examine the reported glucose-lowering effect of the herb, with a keen focus on insulin secretion, specifically related to type 2 diabetes mellitus. An analysis of the contribution of the key constituent flavonoids of Tp extracts will also be discussed.


BIOCELL ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 745-757
Author(s):  
SHADY G. EL-SAWAH ◽  
FAYEZ ALTHOBAITI ◽  
HANAN M. RASHWAN ◽  
ADIL ALDHAHRANI ◽  
MARWA A. ABDEL-DAYEM ◽  
...  

2022 ◽  
Vol 145 ◽  
pp. 112447
Author(s):  
Rong-Jyh Lin ◽  
Yu-Kwan Yen ◽  
Chien-Hsing Lee ◽  
Su-Ling Hsieh ◽  
Yu-Chin Chang ◽  
...  

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Keiichiro Mine ◽  
Seiho Nagafuchi ◽  
Hitoe Mori ◽  
Hirokazu Takahashi ◽  
Keizo Anzai

SARS-CoV-2 infection primarily causes pulmonary symptoms; however, accumulating reports indicate that some patients with COVID-19 have multiple organ dysfunction or failure. Although diabetes is considered a risk factor for severe COVID-19, SARS-CoV-2 infection may also be a causal factor for diabetes mellitus in patients with COVID-19. According to the research reviewed in this paper, the pancreas and pancreatic β cells appear to be targets of SARS-CoV-2 and are damaged by direct or indirect effects of the infection. However, controversial results have been reported between study groups, mainly due to the limited number of cases with diabetes precipitated by COVID-19. In this review, we comprehensively discuss the published findings on the potential association between SARS-CoV-2 infection or COVID-19 and pancreatic β-cell damage leading to diabetes onset. These findings will further contribute to our understanding of the pathogenesis of diabetes mellitus.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 19
Author(s):  
Mandy Pack ◽  
Claudia Götz ◽  
Selina Wrublewsky ◽  
Mathias Montenarh

The pyrazolopyrimidine based compound SGC-CK2-1 is a potent and highly specific CK2 inhibitor and a new tool to study the biological functions of protein kinase CK2 irrespective from off-target effects. We used this compound in comparison with the well-established CK2 inhibitor CX-4945 to analyze the importance of CK2 for insulin production and secretion from pancreatic β-cells. Both inhibitors affected the proliferation and viability of MIN6 cells only marginally and downregulated the endogenous CK2 activity to a similar level. Furthermore, both inhibitors increased the message for insulin and boosted the secretion of insulin from storage vesicles. Thus, regarding the high specificity of SGC-CK2-1, we can clearly attribute the observed effects to biological functions of protein kinase CK2.


2021 ◽  
Vol 22 (23) ◽  
pp. 13133
Author(s):  
Alexander Becker ◽  
Claudia Götz ◽  
Mathias Montenarh ◽  
Stephan E. Philipp

In pancreatic β-cells of the line INS-1, glucose uptake and metabolism induce the openings of Ca2+-permeable TRPM3 channels that contribute to the elevation of the intracellular Ca2+ concentration and the fusion of insulin granules with the plasma membrane. Conversely, glucose-induced Ca2+ signals and insulin release are reduced by the activity of the serine/threonine kinase CK2. Therefore, we hypothesized that TRPM3 channels might be regulated by CK2 phosphorylation. We used recombinant TRPM3α2 proteins, native TRPM3 proteins from INS-1 β-cells, and TRPM3-derived oligopeptides to analyze and localize CK2-dependent phosphorylation of TRPM3 channels. The functional consequences of CK2 phosphorylation upon TRPM3-mediated Ca2+ entry were investigated in Fura-2 Ca2+-imaging experiments. Recombinant TRPM3α2 channels expressed in HEK293 cells displayed enhanced Ca2+ entry in the presence of the CK2 inhibitor CX-4945 and their activity was strongly reduced after CK2 overexpression. TRPM3α2 channels were phosphorylated by CK2 in vitro at serine residue 1172. Accordingly, a TRPM3α2 S1172A mutant displayed enhanced Ca2+ entry. The TRPM3-mediated Ca2+ entry in INS-1 β-cells was also strongly increased in the presence of CX-4945 and reduced after overexpression of CK2. Our study shows that CK2-mediated phosphorylation controls TRPM3 channel activity in INS-1 β-cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Isabella Marinelli ◽  
Patrick A. Fletcher ◽  
Arthur S. Sherman ◽  
Leslie S. Satin ◽  
Richard Bertram

Insulin is secreted in a pulsatile pattern, with important physiological ramifications. In pancreatic β-cells, which are the cells that synthesize insulin, insulin exocytosis is elicited by pulses of elevated intracellular Ca2+ initiated by bursts of electrical activity. In parallel with these electrical and Ca2+ oscillations are oscillations in metabolism, and the periods of all of these oscillatory processes are similar. A key question that remains unresolved is whether the electrical oscillations are responsible for the metabolic oscillations via the effects of Ca2+, or whether the metabolic oscillations are responsible for the electrical oscillations due to the effects of ATP on ATP-sensitive ion channels? Mathematical modeling is a useful tool for addressing this and related questions as modeling can aid in the design of well-focused experiments that can test the predictions of particular models and subsequently be used to improve the models in an iterative fashion. In this article, we discuss a recent mathematical model, the Integrated Oscillator Model (IOM), that was the product of many years of development. We use the model to demonstrate that the relationship between calcium and metabolism in beta cells is symbiotic: in some contexts, the electrical oscillations drive the metabolic oscillations, while in other contexts it is the opposite. We provide new insights regarding these results and illustrate that what might at first appear to be contradictory data are actually compatible when viewed holistically with the IOM.


2021 ◽  
Author(s):  
Xiaoxi Xu ◽  
Yumeng Huang ◽  
Xin Li ◽  
Peter Arvan ◽  
Ming Liu

In the endoplasmic reticulum (ER), the Translocation-Associated Protein complex (TRAP, also called Signal sequence receptor, SSR) includes four integral membrane proteins TRAPα/SSR1, TRAPβ/SSR2 and TRAPδ/SSR4 with the bulk of their extramembranous portions primarily in the ER lumen, whereas the extramembranous portion of TRAPγ/SSR3 is primarily cytosolic. Individually diminished expression of either TRAPα/SSR1, TRAPβ/SSR2 or TRAPδ/SSR4 mRNA is known in each case to lower TRAPα/SSR1 protein levels leading to impaired proinsulin biosynthesis, whereas forced expression of TRAPα/SSR1 at least partially suppresses the proinsulin biosynthetic defect. Here we report that diminished TRAPγ/SSR3 expression in pancreatic β-cells leaves TRAPα/SSR1 levels unaffected while nevertheless inhibiting co-translational and post-translational translocation of preproinsulin into the ER. Crucially, acute exposure to high glucose leads to a rapid upregulation of both TRAPγ/SSR3 and proinsulin protein without change in the respective mRNA levels — observed in cultured rodent β-cell lines and confirmed in human islets. Strikingly, pancreatic β-cells with suppressed TRAPγ/SSR3 expression are blocked in glucose-dependent upregulation of proinsulin (or insulin) biosynthesis. Most remarkable, overexpression of TRAPγ/SSR3 in control β-cells raises proinsulin levels even without boosting extracellular glucose. The data suggest the possibility that TRAPγ/SSR3 may fulfill a rate-limiting function in preproinsulin translocation across the ER membrane for proinsulin biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document