Insulin-Like Growth Factor (IGF)-Binding Protein-3 (IGFBP-3) Binds to Fibronectin (FN): Demonstration of IGF-I/IGFBP-3/FN Ternary Complexes in Human Plasma

2001 ◽  
Vol 86 (5) ◽  
pp. 2104-2110 ◽  
Author(s):  
Y. Gui
2006 ◽  
Vol 16 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Tiffany G. Harris ◽  
Howard D. Strickler ◽  
Herbert Yu ◽  
Michael N. Pollak ◽  
E. Scott Monrad ◽  
...  

2007 ◽  
Vol 92 (9) ◽  
pp. 3660-3666 ◽  
Author(s):  
Iona Cheng ◽  
Katherine DeLellis Henderson ◽  
Christopher A. Haiman ◽  
Laurence N. Kolonel ◽  
Brian E. Henderson ◽  
...  

2012 ◽  
Vol 77 (6) ◽  
pp. 341-350 ◽  
Author(s):  
Eva Landmann ◽  
Barbara Kollerits ◽  
Joachim Gerhard Kreuder ◽  
Werner Friedrich Blum ◽  
Florian Kronenberg ◽  
...  

2001 ◽  
Vol 86 (5) ◽  
pp. 2104-2110 ◽  
Author(s):  
Yaoting Gui ◽  
Liam J. Murphy

We used a yeast two-hybrid system to identify binding partners for insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3). A partial complementary DNA encoding the carboxyl-terminal of fibronectin (FN), including the cell binding site, the heparin-binding domain, and the fibrin-binding domain, was identified in a screen of a human placental complementary DNA library. The interaction of IGFBP-3 with FN and the 40-kDa heparin-binding carboxyl-terminal fragment of FN was confirmed using Western ligand blotting. Both glycosylated and nonglycosylated IGFBP-3 bound to FN with a Kd of approximately 0.3 nmol/L. IGF-I and IGFBP-1 had no effect on IGFBP-3 binding to FN. Competitive inhibition of IGFBP-3 binding to FN was observed in the presence of IGFBP-5 and heparin. The binding affinity of the immobilized IGFBP-3/FN complex for [125I]IGF-I (Kd = 0.8 nmol/L) was similar to that of IGFBP-3 alone. The presence of IGF-I/IGFBP-3/FN ternary complexes in human plasma was demonstrated by coimmunoprecipitation of IGFBP-3 and [125I]IGF-I with anti-FN monoclonal antibody. These data indicate that FN may have a role in the transportation of IGFBP-3 and IGF-I in the circulation and the sequestration of these proteins in tissues.


Author(s):  
Martin W. Elmlinger ◽  
Werner Kühnel ◽  
Matthias M. Weber ◽  
Michael B. Ranke

AbstractAssays for insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3) have become essential tools in the diagnostic work-up of disorders of the somatotropic axis in children and adults. The aim of this study was to evaluate the automated IMMULITE


1994 ◽  
Vol 131 (2) ◽  
pp. 150-155 ◽  
Author(s):  
M Kassem ◽  
K Brixen ◽  
W Blum ◽  
L Mosekilde ◽  
EF Eriksen

Kassem M, Brixen K, Blum W, Mosekilde L, Eriksen EF. No evidence for reduced spontaneous or growth-hormone-stimulated serum levels of insulin-like growth factor (IGF)-I, IGF-II or IGF binding protein 3 in women with spinal osteoporosis. Eur J Endocrinol 1994;131:150–5. ISSN 0804–4643 To test the hypothesis that a dysfunctional growth hormone (GH)–insulin-like growth factor (IGF) axis may play a role in the pathogenesis of osteoporosis, we compared the levels of IGF-I, IGF-II and IGF binding protein 3 (IGFBP-3) in 15 women with spinal osteoporosis (i.e. at least one non-traumatic vertebral fracture) and 15 normal age-matched women. Furthermore, the response to 3 days' treatment with recombinant human GH (r-hGH) (0.2 IU kg−1·day−1) was determined. The basal levels of IGF-I, IGF-II and IGFBP-3 were similar in patients and controls (mean ± sem): IGF-I, 16.5 ± 1.3 versus 16.0 ± 1.3 nmol/l (NS); IGF-II, 79.9 ± 3.6 versus 72.5 ± 4.1 nmol/l (NS); and IGFBP-3, 125.7 ± 6.5 versus 130.3 ± 7.8 nmol/l (NS). Stimulation with r-hGH elicited increased levels of IGF-I, IGF-II and IGFBP-3 within both groups (p < 0.001). The maximal values expressed as a percentage of baseline were: IGF-I, 341 ± 26% versus 369 ± 22%, IGF-II, 125 ± 4% versus 119 ± 5%, IGFBP-3, 141 ± 5% versus 147 ± 7% in osteoporotic patients and controls, respectively. No significant differences were observed between patients and controls in either their maximal response or in the area under the response curves. Our results do not support the hypothesis of a dysfunctional GH–IGF axis in women with spinal osteoporosis. Kim Brixen, University Department of Endocrinology and Metabolism, Aarhus Amtssygehus, Tage-Hansens gade 2, DK-8000 Aarhus C, Denmark


Sign in / Sign up

Export Citation Format

Share Document