Diagnosis, Differential Diagnosis, and Misdiagnosis of Multiple Sclerosis

2019 ◽  
Vol 25 (3) ◽  
pp. 611-635
Author(s):  
Andrew J. Solomon
2017 ◽  
Vol 96 (4) ◽  
pp. 34-42
Author(s):  
N. V. Skripchenko ◽  
◽  
G. P. Ivanova ◽  
E. Y. Skripchenko ◽  
A. V. Surovtseva ◽  
...  

2021 ◽  
pp. 1-5
Author(s):  
Amr Hassan ◽  
Alaa El-Mazny ◽  
Mohammed Saher ◽  
Ismail Ibrahim Ismail ◽  
Mohammed Almuqbil

Guillain-Barre syndrome (GBS) and multiple sclerosis (MS) are autoimmune demyelinating disorders of the peripheral and central nervous systems, respectively. The co-occurrence of these 2 conditions is rare in the literature. Herein, we present a rare case of GBS and MS in a 19-year-old female who presented initially with GBS followed by MS, and we provide a literature review. Despite being rare, it should be kept in mind in the differential diagnosis of patients with atypical and usual presentation of both diseases.


2017 ◽  
Vol 16 (03) ◽  
pp. 164-170
Author(s):  
Rachel Gottlieb-Smith ◽  
Amy Waldman

AbstractAcquired demyelinating syndromes (ADS) present with acute or subacute monofocal or polyfocal neurologic deficits localizing to the central nervous system. The clinical features of distinct ADS have been carefully characterized including optic neuritis, transverse myelitis, and acute disseminated encephalomyelitis. These disorders may all be monophasic disorders. Alternatively, optic neuritis, partial transverse myelitis, and acute disseminated encephalomyelitis may be first presentations of a relapsing or polyphasic neuroinflammatory disorder, such as multiple sclerosis or neuromyelitis optica. The clinical features of these disorders and the differential diagnosis are discussed in this article.


2014 ◽  
Author(s):  
J William Lindsey

Multiple sclerosis (MS) is a relatively common cause of neurologic symptoms and disability in young adults. The distinguishing pathologic features of MS are loss of myelin and inflammation in the central nervous system (CNS). The myelin sheath is essential for rapid conduction of nerve signals along large-diameter axons. Oligodendrocytes produce and maintain myelin in the CNS, and Schwann cells produce and maintain myelin in the peripheral nerves. In addition to MS, there are a number of related disorders causing demyelination, inflammation, or both in the CNS. This chapter discusses MS and related disorders, including neuromyelitis optica, optic neuritis, acute disseminated encephalomyelitis, transverse myelitis, Behçet syndrome, neurosarcoidosis, inherited demyelinating diseases (leukodystrophies, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]), and virus-induced demyelination (progressive multifocal leukoencephalopathy, subacute sclerosing panencephalitis). The section on MS covers epidemiology, etiology/genetics, pathogenesis, diagnosis, differential diagnosis, management, and prognosis. Figures include organization of the microenvironment of larger-diameter axons, typical magnetic resonance imaging findings in MS and neuromyelitis optica, postgadolinium images of the cervical spine in MS, and an approach to treatment of relapsing-remitting MS. Tables list MS and related disorders, distribution of neurologic deficits at the onset of MS, differential diagnosis of MS, disease-modifying therapies for relapsing-remitting MS, and selected leukodystrophies, as well as diagnostic criteria and selected symptomatic therapies for MS. This review contains 3 highly rendered figures, 7 tables, and 82 references.


2015 ◽  
Author(s):  
J William Lindsey

Multiple sclerosis (MS) is a relatively common cause of neurologic symptoms and disability in young adults. The distinguishing pathologic features of MS are loss of myelin and inflammation in the central nervous system (CNS). The myelin sheath is essential for rapid conduction of nerve signals along large-diameter axons. Oligodendrocytes produce and maintain myelin in the CNS, and Schwann cells produce and maintain myelin in the peripheral nerves. In addition to MS, there are a number of related disorders causing demyelination, inflammation, or both in the CNS. This chapter discusses MS and related disorders, including neuromyelitis optica, optic neuritis, acute disseminated encephalomyelitis, transverse myelitis, Behçet syndrome, neurosarcoidosis, inherited demyelinating diseases (leukodystrophies, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy [CADASIL]), and virus-induced demyelination (progressive multifocal leukoencephalopathy, subacute sclerosing panencephalitis). The section on MS covers epidemiology, etiology/genetics, pathogenesis, diagnosis, differential diagnosis, management, and prognosis. Figures include organization of the microenvironment of larger-diameter axons, typical magnetic resonance imaging findings in MS and neuromyelitis optica, postgadolinium images of the cervical spine in MS, and an approach to treatment of relapsing-remitting MS. Tables list MS and related disorders, distribution of neurologic deficits at the onset of MS, differential diagnosis of MS, disease-modifying therapies for relapsing-remitting MS, and selected leukodystrophies, as well as diagnostic criteria and selected symptomatic therapies for MS.   This chapter contains 3 highly rendered figures, 7 tables, 82 references, 1 teaching slide set, and 5 MCQs.


Sign in / Sign up

Export Citation Format

Share Document