demyelinating diseases
Recently Published Documents


TOTAL DOCUMENTS

903
(FIVE YEARS 271)

H-INDEX

50
(FIVE YEARS 8)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ju Liu ◽  
Xiaoyan Yang ◽  
Jiali Pan ◽  
Zhihua Wei ◽  
Peidong Liu ◽  
...  

Relapsing-remitting multiple sclerosis (RRMS) and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) are inflammatory demyelinating diseases of the central nervous system (CNS). Due to the shared clinical manifestations, detection of disease-specific serum antibody of the two diseases is currently considered as the gold standard for the diagnosis; however, the serum antibody levels are unpredictable during different stages of the two diseases. Herein, peripheral blood single-cell transcriptome was used to unveil distinct immune cell signatures of the two diseases, with the aim to provide predictive discrimination. Single-cell RNA sequencing (scRNA-seq) was conducted on the peripheral blood from three subjects, i.e., one patient with RRMS, one patient with MOGAD, and one patient with healthy control. The results showed that the CD19+ CXCR4+ naive B cell subsets were significantly expanded in both RRMS and MOGAD, which was verified by flow cytometry. More importantly, RRMS single-cell transcriptomic was characterized by increased naive CD8+ T cells and cytotoxic memory-like Natural Killer (NK) cells, together with decreased inflammatory monocytes, whereas MOGAD exhibited increased inflammatory monocytes and cytotoxic CD8 effector T cells, coupled with decreased plasma cells and memory B cells. Collectively, our findings indicate that the two diseases exhibit distinct immune cell signatures, which allows for highly predictive discrimination of the two diseases and paves a novel avenue for diagnosis and therapy of neuroinflammatory diseases.


2022 ◽  
Vol 15 ◽  
Author(s):  
Alice Del Giovane ◽  
Mariagiovanna Russo ◽  
Linda Tirou ◽  
Hélène Faure ◽  
Martial Ruat ◽  
...  

The regeneration of myelin is known to restore axonal conduction velocity after a demyelinating event. Remyelination failure in the central nervous system contributes to the severity and progression of demyelinating diseases such as multiple sclerosis. Remyelination is controlled by many signaling pathways, such as the Sonic hedgehog (Shh) pathway, as shown by the canonical activation of its key effector Smoothened (Smo), which increases the proliferation of oligodendrocyte precursor cells via the upregulation of the transcription factor Gli1. On the other hand, the inhibition of Gli1 was also found to promote the recruitment of a subset of adult neural stem cells and their subsequent differentiation into oligodendrocytes. Since Smo is also able to transduce Shh signals via various non-canonical pathways such as the blockade of Gli1, we addressed the potential of non-canonical Smo signaling to contribute to oligodendroglial cell maturation in myelinating cells using the non-canonical Smo agonist GSA-10, which downregulates Gli1. Using the Oli-neuM cell line, we show that GSA-10 promotes Gli2 upregulation, MBP and MAL/OPALIN expression via Smo/AMP-activated Protein Kinase (AMPK) signaling, and efficiently increases the number of axonal contact/ensheathment for each oligodendroglial cell. Moreover, GSA-10 promotes the recruitment and differentiation of oligodendroglial progenitors into the demyelinated corpus callosum in vivo. Altogether, our data indicate that non-canonical signaling involving Smo/AMPK modulation and Gli1 downregulation promotes oligodendroglia maturation until axon engagement. Thus, GSA-10, by activation of this signaling pathway, represents a novel potential remyelinating agent.


2021 ◽  
Vol 54 (3) ◽  
pp. 113-118
Author(s):  
Martha Sady Galeano ◽  
Luís Diaz ◽  
Silvia Adriana González ◽  
Romina González ◽  
Geraldino Godoy ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 274
Author(s):  
Angela Lanciotti ◽  
Maria Stefania Brignone ◽  
Pompeo Macioce ◽  
Sergio Visentin ◽  
Elena Ambrosini

Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kelly F. Paton ◽  
Katharina Robichon ◽  
Nikki Templeton ◽  
Lisa Denny ◽  
Afnan Al Abadey ◽  
...  

Multiple sclerosis is a neurodegenerative disease associated with demyelination and neuroinflammation in the central nervous system. There is an urgent need to develop remyelinating therapies to better treat multiple sclerosis and other demyelinating diseases. The kappa opioid receptor (KOR) has been identified as a potential target for the development of remyelinating therapies; however, prototypical KOR agonists, such as U50,488 have side effects, which limit clinical use. In the current study, we investigated a Salvinorin A analog, ethoxymethyl ether Salvinorin B (EOM SalB) in two preclinical models of demyelination in C57BL/6J mice. We showed that in cellular assays EOM SalB was G-protein biased, an effect often correlated with fewer KOR-mediated side effects. In the experimental autoimmune encephalomyelitis model, we found that EOM SalB (0.1–0.3 mg/kg) effectively decreased disease severity in a KOR-dependent manner and led to a greater number of animals in recovery compared to U50,488 treatment. Furthermore, EOM SalB treatment decreased immune cell infiltration and increased myelin levels in the central nervous system. In the cuprizone-induced demyelination model, we showed that EOM SalB (0.3 mg/kg) administration led to an increase in the number of mature oligodendrocytes, the number of myelinated axons and the myelin thickness in the corpus callosum. Overall, EOM SalB was effective in two preclinical models of multiple sclerosis and demyelination, adding further evidence to show KOR agonists are a promising target for remyelinating therapies.


2021 ◽  
pp. 112067212110652
Author(s):  
Jianping Zhang ◽  
Aifang Fan ◽  
Lili Wei ◽  
Shihui Wei ◽  
Lindan Xie ◽  
...  

Background There are no systematic reviews yet that evaluated the effects of PE/IA in patients with optic neuritis (ON) in demyelinating diseases. A meta-analysis of available study is needed to further explore the value of plasma exchange (PE) or immunoadsorption (IA) in treating ON in demyelinating diseases. Methods All relevant articles published on PubMed, Web of Science, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), VIP Database, Wanfang, Sinomed and ophthalmology professional websites were searched. Study characteristics, demographic characteristics, clinical features and outcome measures were extracted. Response rate, adverse events (AE) rate, serious adverse event (SAE) rate, the log of the minimum angle of resolution (logMAR), visual outcome scale (VOS) and expanded disability status scales (EDSS) were evaluated using a random-effects model. Results 35 studies were included between 1985 and 2020, containing 1191 patients. The response rates of PE and IA in acute attack of ON were 68% and 82% respectively. LogMAR (−0.60 to − 1.42) and VOS (−1.10 to −1.82) had been significantly improved from within 1 month to more than 1 month after PE treatment. Besides, we found that logMAR improved 1.78, 0.95 and 0.38, respectively ,when the time from symptom onset to the first PE/IA was less than 21 days, 21–28 days, and more than 28 days. The pooled mean difference of EDSS was −1.14.Adverse effects rate in patients with PE or IA were 0.20 and 0.06, respectively. Conclusion The meta-analysis provided evidence that PE/IA treatment was an effective and safe intervention, and it is recommended that early initiation of PE/IA treatment is critical.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mette Scheller Nissen ◽  
Matias Ryding ◽  
Anna Christine Nilsson ◽  
Jonna Skov Madsen ◽  
Dorte Aalund Olsen ◽  
...  

Background and ObjectivesThe two most common autoimmune encephalitides (AE), N-methyl-D-Aspartate receptor (NMDAR) and Leucine-rich Glioma-Inactivated 1 (LGI1) encephalitis, have been known for more than a decade. Nevertheless, no well-established biomarkers to guide treatment or estimate prognosis exist. Neurofilament light chain (NfL) has become an unspecific screening marker of axonal damage in CNS diseases, and has proven useful as a diagnostic and disease activity marker in neuroinflammatory diseases. Only limited reports on NfL in AE exist. We investigated NfL levels at diagnosis and follow-up in NMDAR and LGI1-AE patients, and evaluated the utility of CSF-NfL as a biomarker in AE.MethodsPatients were included from the National Danish AE cohort (2009-present) and diagnosed based upon autoantibody positivity and diagnostic consensus criteria. CSF-NfL was analyzed by single molecule array technology. Clinical and diagnostic information was retrospectively evaluated and related to NfL levels at baseline and follow-up. NMDAR-AE patients were subdivided into: idiopathic/teratoma associated or secondary NMDAR-AE (post-viral or concomitant with malignancies/demyelinating disease).ResultsA total of 74 CSF samples from 53 AE patients (37 NMDAR and 16 LGI1 positive) were included in the study. Longitudinal CSF-NfL levels was measured in 21 patients. Median follow-up time was 23.8 and 43.9 months for NMDAR and LGI1-AE respectively. Major findings of this study are: i) CSF-NfL levels were higher in LGI1-AE than in idiopathic/teratoma associated NMDAR-AE at diagnosis; ii) CSF-NfL levels in NMDAR-AE patients distinguished idiopathic/teratoma cases from cases with other underlying etiologies (post-viral or malignancies/demyelinating diseases) and iii) Elevated CSF-NfL at diagnosis seems to be associated with worse long-term disease outcomes in both NMDAR and LGI1-AE.DiscussionCSF-NfL measurement may be beneficial as a prognostic biomarker in NMDAR and LGI1-AE, and high CSF-NfL could foster search for underlying etiologies in NMDAR-AE. Further studies on larger cohorts, using standardized methods, are warranted.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1325
Author(s):  
Roberto De Masi ◽  
Stefania Orlando ◽  
Francesco Bagordo ◽  
Tiziana Grassi

Discovered in 1993 by Bange et al., the 35-kDa interferon-induced protein (IFP35) is a highly conserved cytosolic interferon-induced leucine zipper protein with a 17q12-21 coding gene and unknown function. Belonging to interferon stimulated genes (ISG), the IFP35 reflects the type I interferon (IFN) activity induced through the JAK-STAT phosphorylation, and it can homodimerize with N-myc-interactor (NMI) and basic leucine zipper transcription factor (BATF), resulting in nuclear translocation and a functional expression. Casein kinase 2-interacting protein-1 (CKIP-1), retinoic acid-inducible gene I (RIG-I), and laboratory of genetics and physiology 2 Epinephelus coioides (EcLGP2) are thought to regulate IFP35, via the innate immunity pathway. Several in vitro and in vivo studies on fish and mammals have confirmed the IFP35 as an ISG factor with antiviral and antiproliferative functions. However, in a mice model of sepsis, IFP35 was found working as a damage associated molecular pattern (DAMP) molecule, which enhances inflammation by acting in the innate immune-mediated way. In human pathology, the IFP35 expression level predicts disease outcome and response to therapy in Multiple Sclerosis (MS), reflecting IFN activity. Specifically, IFP35 was upregulated in Lupus Nephritis (LN), Rheumatoid Arthritis (RA), and untreated MS. However, it normalized in the MS patients undergoing therapy. The considered data indicate IFP35 as a pleiotropic factor, suggesting it as biologically relevant in the innate immunity, general pathology, and human demyelinating diseases of the central nervous system.


2021 ◽  
Vol 12 (2) ◽  
pp. 526-538
Author(s):  
Abed AlRaouf Kawtharani ◽  
Battoul Fakhry ◽  
Abbass Serhan

Concurrently with the quick development of COVID-19 vaccines globally, concerns about vaccination efficacy and safety are rising. Neurological complications such as transverse myelitis (TM) are major worries because they can cause lifelong disabilities, which may require long term care. Here, we report a case of longitudinal extensive transverse myelitis (LETM), with sixth nerve palsy in a young female occurring shortly after ChAdOx1 nCov-19 vaccine. The patient recalled developing strabismus, progressive ascending bilateral lower limb weakness, along with upper extremity paresthesia, abnormal sensation below T6 dermatomes, and difficulty in urination. She presented to the hospital with complete paralysis below the neck associated with urinary retention. Extensive diagnostic studies were performed to rule out alternative etiologies, including but not limited to demyelinating diseases, para-post infectious agents, paraneoplastic syndromes, tumors, and autoimmune diseases. She was treated with corticosteroids and discharged upon clinical improvement. However, the patient clinically deteriorated and intravenous immunoglobulin was administered. Unfortunately, the patient is still suffering from physical impairment. We suggested that LETM could be induced by an autoimmune process triggered molecule mimicry. In conclusion, safety monitoring of the COVID-19 vaccines is of great importance in the post marketing surveillance, particularly for rare adverse events.


Sign in / Sign up

Export Citation Format

Share Document