A Potential Use for Intraoperative Three-Dimensional Transesophageal Echocardiography in Predicting Left Ventricular Chamber Dimensions and Ejection Fraction After Aneurysm Resection

2010 ◽  
Vol 111 (6) ◽  
pp. 1362-1365 ◽  
Author(s):  
Marc S. Azran ◽  
Raymond Kwong ◽  
Frederick Y. Chen ◽  
Stanton K. Shernan
2000 ◽  
Vol 140 (4) ◽  
pp. 596-602 ◽  
Author(s):  
Glenn Van Langenhove ◽  
Jaap N. Hamburger ◽  
Peter C. Smits ◽  
Mariano Albertal ◽  
Emile Onderwater ◽  
...  

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Bryant M Baldwin ◽  
Shane Joseph ◽  
Xiaodong Zhong ◽  
Ranya Kakish ◽  
Cherie Revere ◽  
...  

This study investigated MRI and semantic segmentation-based deep-learning (SSDL) automation for left-ventricular chamber quantifications (LVCQ) and low longitudinal strain (LLS) determination, thus eliminating user-bias by providing an automated tool to detect cardiotoxicity (CT) in breast cancer patients treated with antineoplastic agents. Displacement Encoding with Stimulated Echoes-based (DENSE) myocardial images from 26 patients were analyzed with the tool’s Convolution Neural Network with underlying Resnet-50 architecture. Quantifications based on the SSDL tool’s output were for LV end-diastolic diameter (LVEDD), ejection fraction (LVEF), and mass (LVM) (see figure for phase sequence). LLS was analyzed with Radial Point Interpolation Method (RPIM) with DENSE phase-based displacements. LVCQs were validated by comparison to measurements obtained with an existing semi-automated vendor tool (VT) and strains by 2 independent users employing Bland-Altman analysis (BAA) and interclass correlation coefficients estimated with Cronbach’s Alpha (C-Alpha) index. F1 score for classification accuracy was 0.92. LVCQs determined by SSDL and VT were 4.6 ± 0.5 vs 4.6 ± 0.7 cm (C-Alpha = 0.93 and BAA = 0.5 ± 0.5 cm) for LVEDD, 58 ± 5 vs 58 ± 6 % (0.90, 1 ± 5%) for LVEF, 119 ± 17 vs 121 ± 14 g (0.93, 5 ± 8 g) for LV mass, while LLS was 14 ± 4 vs 14 ± 3 % (0.86, 0.2 ± 6%). Hence, equivalent LV dimensions, mass and strains measured by VT and DENSE imaging validate our unique automated analytic tool. Longitudinal strains in patients can then be analyzed without user bias to detect abnormalities for the indication of cardiotoxicity and the need for therapeutic intervention even if LVEF is not affected.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
A E Vijiiac ◽  
D Muraru ◽  
F Jarjour ◽  
K Kupczynska ◽  
C Palermo ◽  
...  

Abstract Background The right atrium (RA) is a highly dynamic chamber with 3 mechanical functions (reservoir, conduit, booster pump) and prognostic implications in heart failure (HF) and pulmonary hypertension (PH). However, RA function and its interplay with the right ventricular (RV) performance in patients (pts) with reduced left ventricular ejection fraction (LVEF) and without PH remain to be clarified. Methods We used three-dimensional echocardiography to study 55 pts (61 ± 14 years, 43 men) with LVEF < 40% no more than mild tricuspid regurgitation (TR), and maximum velocity of the TR jet < 3 m/s. We measured the three-dimensional RA total, passive, active ejection volumes (EV) and the respective emptying fractions (EF). In addition, we compared RV volumes and ejection fraction (RVEF) between patients with normal and abnormal RA function. Results Mean LVEF was 30 ± 7%. Mean echo-derived pulmonary vascular resistance was 1.64 ± 0.54 Wood units. 28 pts (51%) had reduced RA reservoir function (total EF = 34 ± 9%), 34 pts (62%) had reduced RA conduit function (passive EF = 15 ± 4%), and 10 pts (18%) had reduced RA pump function (active EF = 11 ± 3%). Pts with reduced RA reservoir function showed larger RV end-systolic volume (RVESV 124 ± 48ml vs. 90 ± 32ml; p = 0.004) and lower RVEF (38 ± 8% vs. 46 ± 6%; p < 0.001) than pts with normal RA function. Pts with reduced RA conduit function showed smaller RV stroke volume (RVSV 65 ± 19 ml vs. 80 ± 22ml; p = 0.009). Pts with impaired RA pump function showed larger RVESV (142 ± 45ml vs. 99 ± 41ml; p = 0.02) and lower RVEF (36 ± 6% vs. 43 ± 8%; p = 0.006). RVESV was positively correlated with total (r2 = 0.47, p < 0.001), passive (r2 = 0.29, p = 0.03) and active (r2 = 0.39, p = 0.003) RAEV, while it was negatively correlated with total (r2=-0.41, p = 0.002), passive (r2=-0.34, p = 0.01) and active (r2=-0.31, p = 0.02) RAEF. RVSV showed a positive correlation with both total (r2 = 0.4, p = 0.002) and passive (r2 = 0.41, p = 0.002) RAEV. Finally, RVEF was positively correlated with total (r2 = 0.51, p < 0.001), passive (r2 = 0.47, p < 0.001), and active (r2 = 0.36, p = 0.007) RAEF. Conclusions RA dysfunction is not uncommon in pts with reduced LVEF, even in the absence of PH. In these pts, RA function is associated with significant changes in RV function. The RA acts as a dynamic modulator of RV pump function by redistributing RV filling and ejection force among reservoir, conduit and pump functions in the setting of altered hemodynamics. The clinical and prognostic significance of RA function in pts with reduced LVEF warrant further studies.


Sign in / Sign up

Export Citation Format

Share Document