scholarly journals Preferential attachment without vertex growth: Emergence of the giant component

2021 ◽  
Vol 31 (4) ◽  
Author(s):  
Svante Janson ◽  
Lutz Warnke
2012 ◽  
Vol 44 (2) ◽  
pp. 583-601 ◽  
Author(s):  
Steffen Dereich ◽  
Christian Mönch ◽  
Peter Mörters

We show that in preferential attachment models with power-law exponent τ ∈ (2, 3) the distance between randomly chosen vertices in the giant component is asymptotically equal to (4 + o(1))log log N / (-log(τ − 2)), where N denotes the number of nodes. This is twice the value obtained for the configuration model with the same power-law exponent. The extra factor reveals the different structure of typical shortest paths in preferential attachment graphs.


2012 ◽  
Vol 44 (02) ◽  
pp. 583-601 ◽  
Author(s):  
Steffen Dereich ◽  
Christian Mönch ◽  
Peter Mörters

We show that in preferential attachment models with power-law exponent τ ∈ (2, 3) the distance between randomly chosen vertices in the giant component is asymptotically equal to (4 +o(1))log logN/ (-log(τ − 2)), whereNdenotes the number of nodes. This is twice the value obtained for the configuration model with the same power-law exponent. The extra factor reveals the different structure of typical shortest paths in preferential attachment graphs.


Author(s):  
Mark Newman

This chapter describes models of the growth or formation of networks, with a particular focus on preferential attachment models. It starts with a discussion of the classic preferential attachment model for citation networks introduced by Price, including a complete derivation of the degree distribution in the limit of large network size. Subsequent sections introduce the Barabasi-Albert model and various generalized preferential attachment models, including models with addition or removal of extra nodes or edges and models with nonlinear preferential attachment. Also discussed are node copying models and models in which networks are formed by optimization processes, such as delivery networks or airline networks.


Author(s):  
Mark Newman

A discussion of the most fundamental of network models, the configuration model, which is a random graph model of a network with a specified degree sequence. Following a definition of the model a number of basic properties are derived, including the probability of an edge, the expected number of multiedges, the excess degree distribution, the friendship paradox, and the clustering coefficient. This is followed by derivations of some more advanced properties including the condition for the existence of a giant component, the size of the giant component, the average size of a small component, and the expected diameter. Generating function methods for network models are also introduced and used to perform some more advanced calculations, such as the calculation of the distribution of the number of second neighbors of a node and the complete distribution of sizes of small components. The chapter ends with a brief discussion of extensions of the configuration model to directed networks, bipartite networks, networks with degree correlations, networks with high clustering, and networks with community structure, among other possibilities.


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


2021 ◽  
Vol 13 (3) ◽  
pp. 1512
Author(s):  
Yicheol Han ◽  
Stephan J. Goetz ◽  
Claudia Schmidt

This article presents a spatial supply network model for estimating and visualizing spatial commodity flows that used data on firm location and employment, an input–output table of inter-industry transactions, and material balance-type equations. Building on earlier work, we proposed a general method for visualizing detailed supply chains across geographic space, applying the preferential attachment rule to gravity equations in the network context; we then provided illustrations for U.S. extractive, manufacturing, and service industries, also highlighting differences in rural–urban interdependencies across these sectors. The resulting visualizations may be helpful for better understanding supply chain geographies, as well as business interconnections and interdependencies, and to anticipate and potentially address vulnerabilities to different types of shocks.


Sign in / Sign up

Export Citation Format

Share Document