An approximate best prediction approach to small area estimation for sheet and rill erosion under informative sampling

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Emily Berg ◽  
Jae-Kwang Kim
2019 ◽  
pp. 004912411982616 ◽  
Author(s):  
Angelo Moretti ◽  
Natalie Shlomo ◽  
Joseph W. Sakshaug

Small area estimation (SAE) plays a crucial role in the social sciences due to the growing need for reliable and accurate estimates for small domains. In the study of well-being, for example, policy makers need detailed information about the geographical distribution of a range of social indicators. We investigate data dimensionality reduction using factor analysis models and implement SAE on the factor scores under the empirical best linear unbiased prediction approach. We contrast this approach with the standard approach of providing a dashboard of indicators or a weighted average of indicators at the local level. We demonstrate the approach in a simulation study and a real data application based on the European Union Statistics for Income and Living Conditions for the municipalities of Tuscany.


2018 ◽  
Vol 34 (2) ◽  
pp. 523-542 ◽  
Author(s):  
Thomas Zimmermann ◽  
Ralf Thomas Münnich

Abstract The demand for reliable business statistics at disaggregated levels, such as industry classes, increased considerably in recent years. Owing to small sample sizes for some of the domains, design-based methods may not provide estimates with adequate precision. Hence, modelbased small area estimation techniques that increase the effective sample size by borrowing strength are needed. Business data are frequently characterised by skewed distributions, with a few large enterprises that account for the majority of the total for the variable of interest, for example turnover. Moreover, the relationship between the variable of interest and the auxiliary variables is often non-linear on the original scale. In many cases, a lognormal mixed model provides a reasonable approximation of this relationship. In this article, we extend the empirical best prediction (EBP) approach to compensate for informative sampling, by incorporating design information among the covariates via an augmented modelling approach. This gives rise to the EBP under the augmented model. We propose to select the augmenting variable based on a joint assessment of a measure of predictive accuracy and a check of the normality assumptions. Finally, we compare our approach with alternatives in a model-based simulation study under different informative sampling mechanisms.


2018 ◽  
Author(s):  
Minh Cong Nguyen ◽  
Paul Corral ◽  
Joao Pedro Azevedo ◽  
Qinghua Zhao

Author(s):  
Benmei Liu ◽  
Isaac Dompreh ◽  
Anne M Hartman

Abstract Background The workplace and home are sources of exposure to secondhand smoke (SHS), a serious health hazard for nonsmoking adults and children. Smoke-free workplace policies and home rules protect nonsmoking individuals from SHS and help individuals who smoke to quit smoking. However, estimated population coverages of smoke-free workplace policies and home rules are not typically available at small geographic levels such as counties. Model-based small area estimation techniques are needed to produce such estimates. Methods Self-reported smoke-free workplace policies and home rules data came from the 2014-2015 Tobacco Use Supplement to the Current Population Survey. County-level design-based estimates of the two measures were computed and linked to county-level relevant covariates obtained from external sources. Hierarchical Bayesian models were then built and implemented through Markov Chain Monte Carlo methods. Results Model-based estimates of smoke-free workplace policies and home rules were produced for 3,134 (out of 3,143) U.S. counties. In 2014-2015, nearly 80% of U.S. adult workers were covered by smoke-free workplace policies, and more than 85% of U.S. adults were covered by smoke-free home rules. We found large variations within and between states in the coverage of smoke-free workplace policies and home rules. Conclusions The small-area modeling approach efficiently reduced the variability that was attributable to small sample size in the direct estimates for counties with data and predicted estimates for counties without data by borrowing strength from covariates and other counties with similar profiles. The county-level modeled estimates can serve as a useful resource for tobacco control research and intervention. Implications Detailed county- and state-level estimates of smoke-free workplace policies and home rules can help identify coverage disparities and differential impact of smoke-free legislation and related social norms. Moreover, this estimation framework can be useful for modeling different tobacco control variables and applied elsewhere, e.g., to other behavioral, policy, or health related topics.


Sign in / Sign up

Export Citation Format

Share Document