A Pieri formula in the Grothendieck ring of a flag bundle

1994 ◽  
Vol 76 (3) ◽  
pp. 711-729 ◽  
Author(s):  
William Fulton ◽  
Alain Lascoux
Author(s):  
Thomas Hudson

AbstractUnder the assumption that the base field k has characteristic 0, we prove a formula for the push-forward class of Bott-Samelson resolutions in the algebraic cobordism ring of the flag bundle. We specialise our formula to connective K-theory providing a geometric interpretation to the double β-polynomials of Fomin and Kirillov by computing the fundamental classes of schubert varieties. As a corollary we obtain a Thom-Porteous formula generalising those of the Chow ring and of the Grothendieck ring of vector bundles.


Author(s):  
Shahram Biglari

AbstractWe study the natural λ-ring structure on the Grothendieck ring of the triangulated category of mixed motives. Basic properties of a natural notion of characteristic-like series are developed in the context of equivariant objects.


2015 ◽  
Vol 152 (2) ◽  
pp. 299-326 ◽  
Author(s):  
Fan Qin

We construct the quantized enveloping algebra of any simple Lie algebra of type $\mathbb{A}\mathbb{D}\mathbb{E}$ as the quotient of a Grothendieck ring arising from certain cyclic quiver varieties. In particular, the dual canonical basis of a one-half quantum group with respect to Lusztig’s bilinear form is contained in the natural basis of the Grothendieck ring up to rescaling. This paper expands the categorification established by Hernandez and Leclerc to the whole quantum groups. It can be viewed as a geometric counterpart of Bridgeland’s recent work for type $\mathbb{A}\mathbb{D}\mathbb{E}$.


2018 ◽  
Vol 19 (3) ◽  
pp. 947-964
Author(s):  
Dori Bejleri ◽  
Dhruv Ranganathan ◽  
Ravi Vakil

The motivic Hilbert zeta function of a variety $X$ is the generating function for classes in the Grothendieck ring of varieties of Hilbert schemes of points on $X$. In this paper, the motivic Hilbert zeta function of a reduced curve is shown to be rational.


10.37236/7387 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Anna Stokke

The classical Pieri formula gives a combinatorial rule for decomposing the product of a Schur function and a complete homogeneous symmetric polynomial as a linear combination of Schur functions with integer coefficients. We give a Pieri rule for describing the product of an orthosymplectic character and an orthosymplectic character arising from a one-row partition. We establish that the orthosymplectic Pieri rule coincides with Sundaram's Pieri rule for symplectic characters and that orthosymplectic characters and symplectic characters obey the same product rule. 


Author(s):  
Christopher Ryba

Abstract Given a tensor category $\mathcal{C}$ over an algebraically closed field of characteristic zero, we may form the wreath product category $\mathcal{W}_n(\mathcal{C})$. It was shown in [10] that the Grothendieck rings of these wreath product categories stabilise in some sense as $n \to \infty $. The resulting “limit” ring, $\mathcal{G}_\infty ^{\mathbb{Z}}(\mathcal{C})$, is isomorphic to the Grothendieck ring of the wreath product Deligne category $S_t(\mathcal{C})$ as defined by [9] (although it is also related to $FI_G$-modules). This ring only depends on the Grothendieck ring $\mathcal{G}(\mathcal{C})$. Given a ring $R$ that is free as a $\mathbb{Z}$-module, we construct a ring $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ that specialises to $\mathcal{G}_\infty ^{\mathbb{Z}}(\mathcal{C})$ when $R = \mathcal{G}(\mathcal{C})$. We give a description of $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ using generators very similar to the basic hooks of [5]. We also show that $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ is a $\lambda $-ring wherever $R$ is and that $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ is (unconditionally) a Hopf algebra. Finally, we show that $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ is isomorphic to the Hopf algebra of distributions on the formal neighbourhood of the identity in $(W\otimes _{\mathbb{Z}} R)^\times $, where $W$ is the ring of Big Witt Vectors.


2000 ◽  
Vol 6 (3) ◽  
pp. 311-330 ◽  
Author(s):  
Jan Krajíček ◽  
Thomas Scanlon

AbstractWe recall the notions of weak and strong Euler characteristics on a first order structure and make explicit the notion of a Grothendieck ring of a structure. We define partially ordered Euler characteristic and Grothendieck ring and give a characterization of structures that have non-trivial partially ordered Grothendieck ring. We give a generalization of counting functions to locally finite structures, and use the construction to show that the Grothendieck ring of the complex numbers contains as a subring the ring of integer polynomials in continuum many variables. We prove the existence of a universal strong Euler characteristic on a structure. We investigate the dependence of the Grothendieck ring on the theory of the structure and give a few counter-examples. Finally, we relate some open problems and independence results in bounded arithmetic to properties of particular Grothendieck rings.


Sign in / Sign up

Export Citation Format

Share Document