Combinatorics with Definable Sets: Euler Characteristics and Grothendieck Rings

2000 ◽  
Vol 6 (3) ◽  
pp. 311-330 ◽  
Author(s):  
Jan Krajíček ◽  
Thomas Scanlon

AbstractWe recall the notions of weak and strong Euler characteristics on a first order structure and make explicit the notion of a Grothendieck ring of a structure. We define partially ordered Euler characteristic and Grothendieck ring and give a characterization of structures that have non-trivial partially ordered Grothendieck ring. We give a generalization of counting functions to locally finite structures, and use the construction to show that the Grothendieck ring of the complex numbers contains as a subring the ring of integer polynomials in continuum many variables. We prove the existence of a universal strong Euler characteristic on a structure. We investigate the dependence of the Grothendieck ring on the theory of the structure and give a few counter-examples. Finally, we relate some open problems and independence results in bounded arithmetic to properties of particular Grothendieck rings.

2004 ◽  
Vol 69 (1) ◽  
pp. 201-214
Author(s):  
Jan Krajíček

AbstractWe define the notion of approximate Euler characteristic of definable sets of a first order structure. We show that a structure admits a non-trivial approximate Euler characteristic if it satisfies weak pigeonhole principle : two disjoint copies of a non-empty definable set A cannot be definably embedded into A, and principle CC of comparing cardinalities: for any two definable sets A, B either A definably embeds in B or vice versa. Also, a structure admitting a non-trivial approximate Euler characteristic must satisfy .Further we show that a structure admits a non-trivial dimension function on definable sets if and only if it satisfies weak pigeonhole principle : for no definable set A with more than one element can A2 definably embed into A.


2008 ◽  
Vol 73 (3) ◽  
pp. 1036-1050
Author(s):  
Immanuel Halupczok

AbstractDenef and Loeser denned a map from the Grothendieck ring of sets definable in pseudo-finite fields to the Grothendieck ring of Chow motives, thus enabling to apply any cohomological invariant to these sets. We generalize this to perfect, pseudo algebraically closed fields with pro-cyclic Galois group.In addition, we define some maps between different Grothendieck rings of definable sets which provide additional information, not contained in the associated motive. In particular we infer that the map of Denef-Loeser is not injective.


2019 ◽  
Vol 62 (4) ◽  
pp. 925-948 ◽  
Author(s):  
S.M. Gusein-Zade ◽  
I. Luengo ◽  
A. Melle-Hernández

AbstractWe define a Grothendieck ring of varieties with actions of finite groups and show that the orbifold Euler characteristic and the Euler characteristics of higher orders can be defined as homomorphisms from this ring to the ring of integers. We describe two natural λ-structures on the ring and the corresponding power structures over it and show that one of these power structures is effective. We define a Grothendieck ring of varieties with equivariant vector bundles and show that the generalized (‘motivic’) Euler characteristics of higher orders can be defined as homomorphisms from this ring to the Grothendieck ring of varieties extended by powers of the class of the complex affine line. We give an analogue of the Macdonald type formula for the generating series of the generalized higher-order Euler characteristics of wreath products.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 902
Author(s):  
S. M. Gusein-Zade ◽  
I. Luengo ◽  
A. Melle-Hernández

The notion of the orbifold Euler characteristic came from physics at the end of the 1980s. Coincidence (up to sign) of the orbifold Euler characteristics is a necessary condition for crepant resolutions of orbifolds to be mirror symmetric. There were defined higher order versions of the orbifold Euler characteristic and generalized (“motivic”) versions of them. In a previous paper, the authors defined a notion of the Grothendieck ring K 0 fGr ( Var C ) of varieties with actions of finite groups on which the orbifold Euler characteristic and its higher order versions are homomorphisms to the ring of integers. Here, we define the generalized orbifold Euler characteristic and higher order versions of it as ring homomorphisms from K 0 fGr ( Var C ) to the Grothendieck ring K 0 ( Var C ) of complex quasi-projective varieties and give some analogues of the classical Macdonald equations for the generating series of the Euler characteristics of the symmetric products of a space.


2015 ◽  
Vol 145 (6) ◽  
pp. 1215-1222 ◽  
Author(s):  
S. M. Gusein-Zade ◽  
I. Luengo ◽  
A. Melle-Hernández

We generalize the notions of the orbifold Euler characteristic and of the higher-order orbifold Euler characteristics to spaces with actions of a compact Lie group using integration with respect to the Euler characteristic instead of the summation over finite sets. We show that the equation for the generating series of the kth-order orbifold Euler characteristics of the Cartesian products of the space with the wreath products actions proved by Tamanoi for finite group actions and by Farsi and Seaton for compact Lie group actions with finite isotropy subgroups holds in this case as well.


2020 ◽  
pp. 1-18
Author(s):  
Anwesh Ray ◽  
R. Sujatha

Abstract The notion of the truncated Euler characteristic for Iwasawa modules is an extension of the notion of the usual Euler characteristic to the case when the homology groups are not finite. This article explores congruence relations between the truncated Euler characteristics for dual Selmer groups of elliptic curves with isomorphic residual representations, over admissible p-adic Lie extensions. Our results extend earlier congruence results from the case of elliptic curves with rank zero to the case of higher rank elliptic curves. The results provide evidence for the p-adic Birch and Swinnerton-Dyer formula without assuming the main conjecture.


Author(s):  
Christopher Ryba

Abstract Given a tensor category $\mathcal{C}$ over an algebraically closed field of characteristic zero, we may form the wreath product category $\mathcal{W}_n(\mathcal{C})$. It was shown in [10] that the Grothendieck rings of these wreath product categories stabilise in some sense as $n \to \infty $. The resulting “limit” ring, $\mathcal{G}_\infty ^{\mathbb{Z}}(\mathcal{C})$, is isomorphic to the Grothendieck ring of the wreath product Deligne category $S_t(\mathcal{C})$ as defined by [9] (although it is also related to $FI_G$-modules). This ring only depends on the Grothendieck ring $\mathcal{G}(\mathcal{C})$. Given a ring $R$ that is free as a $\mathbb{Z}$-module, we construct a ring $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ that specialises to $\mathcal{G}_\infty ^{\mathbb{Z}}(\mathcal{C})$ when $R = \mathcal{G}(\mathcal{C})$. We give a description of $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ using generators very similar to the basic hooks of [5]. We also show that $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ is a $\lambda $-ring wherever $R$ is and that $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ is (unconditionally) a Hopf algebra. Finally, we show that $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ is isomorphic to the Hopf algebra of distributions on the formal neighbourhood of the identity in $(W\otimes _{\mathbb{Z}} R)^\times $, where $W$ is the ring of Big Witt Vectors.


Author(s):  
Jonathan A. Hillman

AbstractWe extend earlier work relating asphericity and Euler characteristics for finite complexes whose fundamental groups have nontrivial torsion free abelian normal subgroups. In particular a finitely presentable group which has a nontrivial elementary amenable subgroup whose finite subgroups have bounded order and with no nontrivial finite normal subgroup must have deficiency at most 1, and if it has a presentation of deficiency 1 then the corresponding 2-complex is aspherical. Similarly if the fundamental group of a closed 4-manifold with Euler characteristic 0 is virtually torsion free and elementary amenable then it either has 2 ends or is virtually an extension of Z by a subgroup of Q, or the manifold is asphencal and the group is virtually poly- Z of Hirsch length 4.


1983 ◽  
Vol 35 (2) ◽  
pp. 353-372 ◽  
Author(s):  
Panaiotis K. Pavlakos

M. Sion and T. Traynor investigated ([15]-[17]), measures and integrals having values in topological groups or semigroups. Their definition of integrability was a modification of Phillips-Rickart bilinear vector integrals, in locally convex topological vector spaces.The purpose of this paper is to develop a good notion of an integration process in partially ordered groups, based on their order structure. The results obtained generalize some of the results of J. D. M. Wright ([19]-[22]) where the measurable functions are real-valued and the measures take values in partially ordered vector spaces.Let if be a σ-algebra of subsets of T, X a lattice group, Y, Z partially ordered groups and m : H → F a F-valued measure on H. By F(T, X), M(T, X), E(T, X) and S(T, X) are denoted the lattice group of functions with domain T and with range X, the lattice group of (H, m)-measurable functions of F(T, X) and the lattice group of (H, m)-elementary measurable functions of F(T, X) and the lattice group of (H, m)-simple measurable functions of F(T, X) respectively.


Sign in / Sign up

Export Citation Format

Share Document