Explicit integral basis of pure sextic fields

2021 ◽  
Vol 51 (2) ◽  
Author(s):  
Anuj Jakhar
Keyword(s):  
2019 ◽  
Vol 5 (1) ◽  
pp. 495-498
Author(s):  
Özen Özer

AbstractDifferent types of number theories such as elementary number theory, algebraic number theory and computational number theory; algebra; cryptology; security and also other scientific fields like artificial intelligence use applications of quadratic fields. Quadratic fields can be separated into two parts such as imaginary quadratic fields and real quadratic fields. To work or determine the structure of real quadratic fields is more difficult than the imaginary one.The Dirichlet class number formula is defined as a special case of a more general class number formula satisfying any types of number field. It includes regulator, ℒ-function, Dedekind zeta function and discriminant for the field. The Dirichlet’s class number h(d) formula in real quadratic fields claims that we have h\left(d \right).log {\varepsilon _d} = \sqrt {\Delta} {\scr L} \left({1,\;{\chi _d}}\right) for positive d > 0 and the fundamental unit ɛd of {\rm{\mathbb Q}}\left({\sqrt d} \right) . It is seen that discriminant, ℒ-function and fundamental unit ɛd are significant and necessary tools for determining the structure of real quadratic fields.The focus of this paper is to determine structure of some special real quadratic fields for d > 0 and d ≡ 2,3 (mod4). In this paper, we provide a handy technique so as to calculate particular continued fraction expansion of integral basis element wd, fundamental unit ɛd, and so on for such real quadratic number fields. In this paper, we get fascinating results in the development of real quadratic fields.


2005 ◽  
Vol 48 (4) ◽  
pp. 576-579 ◽  
Author(s):  
Humio Ichimura

AbstractLet m = pe be a power of a prime number p. We say that a number field F satisfies the property when for any a ∈ F×, the cyclic extension F(ζm, a1/m)/F(ζm) has a normal p-integral basis. We prove that F satisfies if and only if the natural homomorphism is trivial. Here K = F(ζm), and denotes the ideal class group of F with respect to the p-integer ring of F.


1970 ◽  
Vol 13 (4) ◽  
pp. 431-439 ◽  
Author(s):  
James A. Dyer

The purpose of this paper is to consider a representation for the elements of a linear topological space in the form of a σ-integral over a linearly ordered subset of V; this ordered subset is what will be called an L basis. The formal definition of an L basis is essentially an abstraction from ideas used, often tacitly, in proofs of many of the theorems concerning integral representations for continuous linear functionals on function spaces.The L basis constructed in this paper differs in several basic ways from the integral basis considered by Edwards in [5]. Since the integrals used here are of Hellinger type rather than Radon type one has in the approximating sums for the integral an immediate and natural analogue to the partial sum operators of summation basis theory.


1976 ◽  
Vol 19 (3) ◽  
pp. 373-374 ◽  
Author(s):  
James A. Schafer

Let T2 = S1×S1, where S1 is the unit circle, and let {α, β} be the integral basis of H1(T2) induced by the 2 S1-factors. It is well known that 0 ≠ X = pα + qβ is represented by a simple closed curve (i.e. the homotopy class αppq contains a simple closed curve) if and only if gcd(p, q) = 1. It is the purpose of this note to extend this theorem to oriented surfaces of genus g.


2010 ◽  
Vol 06 (07) ◽  
pp. 1589-1607 ◽  
Author(s):  
LEANNE ROBERTSON

A number field is said to be monogenic if its ring of integers is a simple ring extension ℤ[α] of ℤ. It is a classical and usually difficult problem to determine whether a given number field is monogenic and, if it is, to find all numbers α that generate a power integral basis {1, α, α2, …, αk} for the ring. The nth cyclotomic field ℚ(ζn) is known to be monogenic for all n, and recently Ranieri proved that if n is coprime to 6, then up to integer translation all the integral generators for ℚ(ζn) lie on the unit circle or the line Re (z) = 1/2 in the complex plane. We prove that this geometric restriction extends to the cases n = 3k and n = 4k, where k is coprime to 6. We use this result to find all power integral bases for ℚ(ζn) for n = 15, 20, 21, 28. This leads us to a conjectural solution to the problem of finding all integral generators for cyclotomic fields.


2003 ◽  
Vol 2003 (25) ◽  
pp. 1623-1626
Author(s):  
Blair K. Spearman ◽  
Kenneth S. Williams

LetKbe a pure cubic field. LetLbe the normal closure ofK. A relative integral basis (RIB) forLoverℚ(−3)is given. This RIB simplifies and completes the one given by Haghighi (1986).


2005 ◽  
Vol 71 (1) ◽  
pp. 167-173 ◽  
Author(s):  
Laurel Miller-Sims ◽  
Leanne Robertson

We consider the problem of determining all power integral bases for the maximal real subfield Q (ζ + ζ−1) of the p-th cyclotomic field Q (ζ), where p ≥ 5 is prime and ζ is a primitive p-th root of unity. The ring of integers is Z[ζ+ζ−1] so a power integral basis always exists, and there are further non-obvious generators for the ring. Specifically, we prove that if or one of the Galois conjugates of these five algebraic integers. Up to integer translation and multiplication by −1, there are no additional generators for p ≤ 11, and it is plausible that there are no additional generators for p > 13 as well. For p = 13 there is an additional generator, but we show that it does not generalise to an additional generator for 13 < p < 1000.


Sign in / Sign up

Export Citation Format

Share Document