Thoracic Pedicle Screw Placement Accuracy: Image-Interactive Guidance Versus Conventional Techniques Paper #763

Neurosurgery ◽  
1996 ◽  
Vol 39 (3) ◽  
pp. 653
Author(s):  
Kevin T. Foley ◽  
Maurice M. Smith ◽  
J. J. Abitbol
Spine ◽  
2018 ◽  
Vol 43 (21) ◽  
pp. 1487-1495 ◽  
Author(s):  
Dejan Knez ◽  
Janez Mohar ◽  
Robert J. Cirman ◽  
Boštjan Likar ◽  
Franjo Pernuš ◽  
...  

2011 ◽  
Vol 69 (suppl_1) ◽  
pp. ons14-ons19 ◽  
Author(s):  
Cristian J Luciano ◽  
P Pat Banerjee ◽  
Brad Bellotte ◽  
G Michael Oh ◽  
Michael Lemole ◽  
...  

Abstract BACKGROUND: We evaluated the use of a part-task simulator with 3D and haptic feedback as a training tool for a common neurosurgical procedure - placement of thoracic pedicle screws. OBJECTIVE: To evaluate the learning retention of thoracic pedicle screw placement on a high-performance augmented reality and haptic technology workstation. METHODS: Fifty-one fellows and residents performed thoracic pedicle screw placement on the simulator. The virtual screws were drilled into a virtual patient's thoracic spine derived from a computed tomography data set of a real patient. RESULTS: With a 12.5% failure rate, a 2-proportion z test yielded P = .08. For performance accuracy, an aggregate Euclidean distance deviation from entry landmark on the pedicle and a similar deviation from the target landmark in the vertebral body yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the practice to the test sessions, and the alternative hypothesis assumes an improvement. CONCLUSION: The performance accuracy on the simulator was comparable to the accuracy reported in literature on recent retrospective evaluation of such placements. The failure rates indicated a minor drop from practice to test sessions, and also indicated a trend (P = .08) toward learning retention resulting in improvement from practice to test sessions. The performance accuracy showed a 15% mean score improvement and more than a 50% reduction in standard deviation from practice to test. It showed evidence (P = .04) of performance accuracy improvement from practice to test session.


1999 ◽  
Vol 10 (3) ◽  
pp. 222???226
Author(s):  
Rongming Xu ◽  
Nabil A. Ebraheim ◽  
Matthew E. Shepherd ◽  
Richard A. Yeasting

2009 ◽  
Vol 18 (12) ◽  
pp. 1892-1897 ◽  
Author(s):  
Ahmet Yılmaz Şarlak ◽  
Bilgehan Tosun ◽  
Halil Atmaca ◽  
Hasan Tahsin Sarisoy ◽  
Levent Buluç

2018 ◽  
Vol 46 (6) ◽  
pp. 2386-2397 ◽  
Author(s):  
Paerhati Rexiti ◽  
Yakufu Abulizi ◽  
Aikeremujiang Muheremu ◽  
Shuiquan Wang ◽  
Maierdan Maimaiti ◽  
...  

Objective To study the clinical application of lumbar isthmus parameters in guiding pedicle screw placement. Methods Lumbar isthmus parameters were measured in normal lumbar x-rays and cadaveric specimens from a Chinese Han population. Distance between the medial pedicle border and lateral isthmus border was recorded as a ‘D’ value and was compared between X-rays and cadavers. Orthopaedic surgeons estimated different distances (2–6 mm) and angles (5–20°), and bias ratios between estimated and real values were compared. Orthopaedic residents placed pedicle screws on cadaveric specimens before and after application of the ‘D’ value, and screw placement accuracy was compared. Results Except for L4 vertebrae, significant differences in the ‘D’ value were found between 25 cadaveric specimens and x-ray films from 120 patients. Distances and angles estimated by 40 surgeons were significantly different from all real values, except 2 mm distance. Accuracy of pedicle screw placement by six orthopaedic residents was significantly improved by applying the ‘D’ value. Conclusions Surgeon estimates of distance were more accurate than angle estimates. Addition of a ‘D’ value to conventional parameters may significantly improve pedicle screw placement accuracy in lumbar spine surgery.


Author(s):  
Tomohisa Inoue ◽  
Keiji Wada ◽  
Ayako Tominaga ◽  
Ryo Tamaki ◽  
Tomoya Hirota ◽  
...  

Neurosurgery ◽  
2000 ◽  
Vol 47 (2) ◽  
pp. 530-530 ◽  
Author(s):  
Kevin T. Foley ◽  
Ramesh L. Sahjpaul ◽  
Gerald R. Rodts

Sign in / Sign up

Export Citation Format

Share Document