Three-Dimensional In Vivo Modeling of Vestibular Schwannomas and Surrounding Cranial Nerves With Diffusion Imaging Tractography

Neurosurgery ◽  
2011 ◽  
Vol 68 (4) ◽  
pp. 1077-1083 ◽  
Author(s):  
David Qixiang Chen ◽  
Jessica Quan ◽  
Abhijit Guha ◽  
Michael Tymianski ◽  
David Mikulis ◽  
...  

Abstract BACKGROUND: Preservation of cranial nerves (CNs) is of paramount concern in the treatment of vestibular schwannomas, particularly in large tumors with thinned and distorted CN fibers. However, imaging of the CN fibers surrounding vestibular schwannomas has been limited with 2-dimensional imaging alone. OBJECTIVE: To assess whether tractography of the CN combined with anatomic magnetic resonance imaging of the tumor can provide superior 3-dimensional (3D) visualization of tumor/CN complexes. METHODS: Magnetic resonance imaging at 3 T, including diffusion tensor imaging and anatomic images, were analyzed in 3 subjects with vestibular schwannomas using 3D Slicer software. The diffusion tensor images were used to track the courses of trigeminal, abducens, facial, and vestibulocochlear nerves. The anatomic images were used to model the 3D volume reconstruction of the tumor. The 2 sets of images were then superimposed through the use of linear registration. RESULTS: Combined 3D tumor modeling and CN tractography can effectively and consistently reconstruct the 3D spatial relationship of CN/tumor complexes and allows superior visualization compared with 2-dimensional imaging. Lateral and superior distortion of the trigeminal nerve was observed in all cases. The position of the facial nerve was primarily anteriorly and inferiorly. The gasserian ganglion and early postganglionic branches could also be visualized. CONCLUSION: Tractography and anatomic imaging were successfully combined to demonstrate the precise location of surrounding CN fibers. This technique can be useful in both neuronavigation and radiosurgical planning. Because knowledge of the course of these fibers is of important clinical interest, implementation of this technique may help decrease injury to CNs during treatment of these lesions.

Neurosurgery ◽  
2010 ◽  
Vol 66 (4) ◽  
pp. 788-796 ◽  
Author(s):  
Mojgan Hodaie ◽  
Jessica Quan ◽  
David Qixiang Chen

Abstract OBJECTIVE Diffusion-based tractography has emerged as a powerful technique for 3-dimensional tract reconstruction and imaging of white matter fibers; however, tractography of the cranial nerves has not been well studied. In particular, the feasibility of tractography of the individual cranial nerves has not been previously assessed. METHODS 3-Tesla magnetic resonance imaging scans, including anatomic magnetic resonance images and diffusion tensor images, were used for this study. Tractography of the cranial nerves was performed using 3D Slicer software. The reconstructed 3-dimensional tracts were overlaid onto anatomic images for determination of location and course of intracranial fibers. RESULTS Detailed tractography of the cranial nerves was obtained, although not all cranial nerves were imaged with similar anatomic fidelity. Some tracts were imaged in great detail (cranial nerves II, III, and V). Tractography of the optic apparatus allowed tracing from the optic nerve to the occipital lobe, including Meyer's loop. Trigeminal tractography allowed visualization of the gasserian ganglion as well as postganglionic fibers. Tractography of cranial nerve III shows the course of the fibers through the midbrain. Lower cranial nerves (cranial nerves IX, XI, and XII) could not be imaged well. CONCLUSION Tractography of the cranial nerves is feasible, although technical improvements are necessary to improve the tract reconstruction of the lower cranial nerves. Detailed assessment of anatomy and the ability of overlaying the tracts onto anatomic magnetic resonance imaging scans is essential, particularly in the posterior fossa, to ensure that the tracts have been reconstructed with anatomic fidelity.


Author(s):  
Ruiqing Ni

Amyloid-beta plays an important role in the pathogenesis of Alzheimer’s disease. Aberrant amyloid-beta and tau accumulation induce neuroinflammation, cerebrovascular alterations, synaptic deficits, functional deficits, and neurodegeneration, leading to cognitive impairment. Animal models recapitulating the amyloid-beta pathology such as transgenic, knock-in mouse and rat models have facilitated the understanding of disease mechanisms and development of therapeutics targeting at amyloid-beta. There is a rapid advance in high-field MR in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences such as diffusion tensor imaging, arterial spin labelling, resting-state functional MRI, anatomical MRI, MR spectroscopy as well as contrast agents have been developed for the applications in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole brain field-of-view. MRI have been utilized to visualize non-invasively the amyloid-beta deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, cerebrovascular and glymphatic system in animal models of amyloidosis. Many of the readouts are translational in clinical MRI in the brain of patients with Alzheimer’s disease. In this review, we summarize the recent advance of using MRI for visualizing the pathophysiology in amyloidosis animal model. We discuss the outstanding challenges in brain imaging using MRI in small animal and propose future outlook in visualizing amyloid-beta-related alterations in brain of animal models.


2006 ◽  
Vol 83 (3) ◽  
pp. 392-402 ◽  
Author(s):  
Laura A. Harsan ◽  
Patrick Poulet ◽  
Blandine Guignard ◽  
Jérôme Steibel ◽  
Nathalie Parizel ◽  
...  

2012 ◽  
Vol 8 (4S_Part_5) ◽  
pp. P176-P177
Author(s):  
Shiva Keihaninejad ◽  
Hui Zhang ◽  
Tim Shakespeare ◽  
Natalie Ryan ◽  
Ian Malone ◽  
...  

Neurosurgery ◽  
2011 ◽  
Vol 70 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Lennart Henning Stieglitz ◽  
Kathleen Seidel ◽  
Roland Wiest ◽  
Jürgen Beck ◽  
Andreas Raabe

Abstract BACKGROUND To reduce the risk of disabling postoperative functional deficit in patients with lesions in the dominant hemisphere, information about the localization of eloquent language areas is mandatory. OBJECTIVE To demonstrate the feasibility of arcuate fascicle (AF) tractography for proper localization of eloquent language areas in the superior temporal (STG) and inferior frontal gyrus (IFG). METHODS Between January and June 2010, we performed surgery in 13 patients with highly eloquent lesions with close spatial relationship to the primary language areas. All of them received preoperative diffusion tensor imaging for AF tractography. The STG and IFG were delineated at the ends of the AF. Five patients underwent functional magnetic resonance imaging of the primary language areas. The results were compared with tractography. RESULTS Tractography of the AF without prior knowledge of the localization of the STG and IFG was feasible in all cases. In the cases with functional magnetic resonance imaging, the activation maps matched the tractography results. In all but 1 patient, preservation of the primary language areas was possible, proven by the good neurological outcome. One patient suffered from a language dysfunction caused by a lesion in the medial and inferior temporal gyrus along the surgical pathway. CONCLUSION Tractography of the AF is a useful tool for identification of parts of the main primary language areas. Using tractography as a localization procedure to determine the primary language areas aids in the delineation of the STG and IFG and thus may help reduce the risk of postoperative permanent neurological deficit.


Sign in / Sign up

Export Citation Format

Share Document