scholarly journals A Risk Model with Delayed Claims

2013 ◽  
Vol 50 (3) ◽  
pp. 686-702 ◽  
Author(s):  
Angelos Dassios ◽  
Hongbiao Zhao

In this paper we introduce a simple risk model with delayed claims, an extension of the classical Poisson model. The claims are assumed to arrive according to a Poisson process and claims follow a light-tailed distribution, and each loss payment of the claims will be settled with a random period of delay. We obtain asymptotic expressions for the ruin probability by exploiting a connection to Poisson models that are not time homogeneous. A finer asymptotic formula is obtained for the special case of exponentially delayed claims and an exact formula is obtained when the claims are also exponentially distributed.

2013 ◽  
Vol 50 (03) ◽  
pp. 686-702 ◽  
Author(s):  
Angelos Dassios ◽  
Hongbiao Zhao

In this paper we introduce a simple risk model with delayed claims, an extension of the classical Poisson model. The claims are assumed to arrive according to a Poisson process and claims follow a light-tailed distribution, and each loss payment of the claims will be settled with a random period of delay. We obtain asymptotic expressions for the ruin probability by exploiting a connection to Poisson models that are not time homogeneous. A finer asymptotic formula is obtained for the special case of exponentially delayed claims and an exact formula is obtained when the claims are also exponentially distributed.


2004 ◽  
Vol 18 (1) ◽  
pp. 55-70 ◽  
Author(s):  
Kai W. Ng ◽  
Hailiang Yang ◽  
Lihong Zhang

In this article, we consider a compound Poisson insurance risk model with a random discount factor. This model is also known as the compound filtered Poisson model. By using some stochastic analysis techniques, a convergence result for the discounted surplus process, an expression for the ruin probability, and the upper bounds for the ruin probability are obtained.


2004 ◽  
Vol 2004 (3) ◽  
pp. 221-234 ◽  
Author(s):  
Leda D. Minkova

The Pólya-Aeppli process as a generalization of the homogeneous Poisson process is defined. We consider the risk model in which the counting process is the Pólya-Aeppli process. It is called a Pólya-Aeppli risk model. The problem of finding the ruin probability and the Cramér-Lundberg approximation is studied. The Cramér condition and the Lundberg exponent are defined. Finally, the comparison between the Pélya-Aeppli risk model and the corresponding classical risk model is given.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 982
Author(s):  
Yujuan Huang ◽  
Jing Li ◽  
Hengyu Liu ◽  
Wenguang Yu

This paper considers the estimation of ruin probability in an insurance risk model with stochastic premium income. We first show that the ruin probability can be approximated by the complex Fourier series (CFS) expansion method. Then, we construct a nonparametric estimator of the ruin probability and analyze its convergence. Numerical examples are also provided to show the efficiency of our method when the sample size is finite.


2020 ◽  
Vol 17 (1) ◽  
pp. 67-75
Author(s):  
John Fry ◽  
Oliver Smart ◽  
Jean-Philippe Serbera ◽  
Bernhard Klar

Abstract Amid much recent interest we discuss a Variance Gamma model for Rugby Union matches (applications to other sports are possible). Our model emerges as a special case of the recently introduced Gamma Difference distribution though there is a rich history of applied work using the Variance Gamma distribution – particularly in finance. Restricting to this special case adds analytical tractability and computational ease. Our three-dimensional model extends classical two-dimensional Poisson models for soccer. Analytical results are obtained for match outcomes, total score and the awarding of bonus points. Model calibration is demonstrated using historical results, bookmakers’ data and tournament simulations.


2012 ◽  
Vol 2012 ◽  
pp. 1-26 ◽  
Author(s):  
Yan Li ◽  
Guoxin Liu

We consider the dynamic proportional reinsurance in a two-dimensional compound Poisson risk model. The optimization in the sense of minimizing the ruin probability which is defined by the sum of subportfolio is being ruined. Via the Hamilton-Jacobi-Bellman approach we find a candidate for the optimal value function and prove the verification theorem. In addition, we obtain the Lundberg bounds and the Cramér-Lundberg approximation for the ruin probability and show that as the capital tends to infinity, the optimal strategies converge to the asymptotically optimal constant strategies. The asymptotic value can be found by maximizing the adjustment coefficient.


Sign in / Sign up

Export Citation Format

Share Document