scholarly journals A novel and cost-effective ex vivo orthotopic model for the study of human breast cancer in mouse mammary gland organ culture

Biology Open ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. bio051649
Author(s):  
Akash Gupta ◽  
Geetanjali Gupta ◽  
Rajeshwari R. Mehta ◽  
David Z. Ivancic ◽  
Rashidra R. Walker ◽  
...  
2011 ◽  
Vol 133 (3) ◽  
pp. 997-1008 ◽  
Author(s):  
Juan P. Cerliani ◽  
Silvia I. Vanzulli ◽  
Cecilia Pérez Piñero ◽  
María C. Bottino ◽  
Ana Sahores ◽  
...  

2009 ◽  
Vol 23 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Line R. Jensen ◽  
Else M. Huuse ◽  
Tone F. Bathen ◽  
Pål E. Goa ◽  
Anna M. Bofin ◽  
...  

Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 201 ◽  
Author(s):  
Sara García-Davis ◽  
Ezequiel Viveros-Valdez ◽  
Ana Díaz-Marrero ◽  
José Fernández ◽  
Daniel Valencia-Mercado ◽  
...  

Macroalgae represent an important source of bioactive compounds with a wide range of biotechnological applications. Overall, the discovery of effective cytotoxic compounds with pharmaceutical potential is a significant challenge, mostly because they are scarce in nature or their total synthesis is not efficient, while the bioprospecting models currently used do not predict clinical responses. Given this context, we used three-dimensional (3D) cultures of human breast cancer explants to evaluate the antitumoral effect of laurinterol, the major compound of an ethanolic extract of Laurencia johnstonii. To this end, we evaluated the metabolic and histopathological effects of the crude extract of L. johnstonii and laurinterol on Vero and MCF-7 cells, in addition to breast cancer explants. We observed a dose-dependent inhibition of the metabolic activity, as well as morphologic and nuclear changes characteristic of apoptosis. On the other hand, a reduced metabolic viability and marked necrosis areas were observed in breast cancer explants incubated with the crude extract, while explants treated with laurinterol exhibited a heterogeneous response which was associated with the individual response of each human tumor sample. This study supports the cytotoxic and antitumoral effects of laurinterol in in vitro cell cultures and in ex vivo organotypic cultures of human breast cancer explants.


1987 ◽  
Vol 28 ◽  
pp. 162
Author(s):  
Y. de Launoit() ◽  
R. Kiss() ◽  
A. Malengrau() ◽  
G. Lenglet() ◽  
A. Danguy() ◽  
...  

2006 ◽  
Vol 5 (9) ◽  
pp. 2300-2309 ◽  
Author(s):  
Alison J. Butt ◽  
Caroline G. Roberts ◽  
Alan A. Seawright ◽  
Peter B. Oelrichs ◽  
John K. MacLeod ◽  
...  

2020 ◽  
Author(s):  
Ana Luísa Cartaxo ◽  
Marta F Estrada ◽  
Giacomo Domenici ◽  
Ruben Roque ◽  
Fernanda Silva ◽  
...  

Abstract Background Estrogen receptor α (ERα) signaling is a defining and driving event in most breast cancers; ERα is detected in malignant epithelial cells of 75% of all breast cancers (classified as ER-positive breast cancer) and, in these cases, ERα targeting is the main therapeutic strategy. However, the biological determinants of ERα heterogeneity and the mechanisms underlying therapeutic resistance are still elusive, hampered by the challenges in developing experimental models recapitulative of intra-tumoral heterogeneity and in which ERα signaling is sustained. Ex vivo cultures of human breast cancer tissue have been proposed to retain the original tissue architecture, epithelial and stromal cell components and ERα. However, loss of cellularity, viability and ERα expression are well-known culture-related phenomena. Methods BC samples were collected and brought to the laboratory. Then they were minced, enzymatically digested, entrapped in alginate and cultured for one month. The histological architecture, cellular composition and cell proliferation of tissue microstructures were assessed by immunohistochemistry. Cell viability was assessed by measurement of cell metabolic activity. The presence of ERα was accessed by immunohistochemistry and RT-qPCR and its functionality evaluated by challenge with 17−β−estradiol and fulvestrant, respectively. Results We describe a strategy based on entrapment of breast cancer tissue microstructures in alginate capsules and their long-term culture under agitation, successfully applied to tissue obtained from 63 breast cancer patients. After one month in culture, the architectural features of the encapsulated tissue microstructures were similar to the original patient tumors: epithelial, stromal and endothelial compartments were maintained with an average of 97 of cell viability compared to day 0. In ERα-positive cases, fibers of collagen, the main extracellular matrix component in vivo , were preserved. ERα expression was retained at gene and protein levels and response to ERα stimulation and inhibition was observed at the level of downstream targets, demonstrating active ER signaling. Conclusions The proposed model system is a new methodology to study ex vivo breast cancer biology, in particular ERα signaling. It is suitable for interrogating the long-term effects of anti-endocrine drugs in a set-up that closely resembles the original tumor microenvironment, with potential application in pre- and co-clinical assays of ERα-positive breast cancer.


Sign in / Sign up

Export Citation Format

Share Document