scholarly journals Antitumoral Effect of Laurinterol on 3D Culture of Breast Cancer Explants

Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 201 ◽  
Author(s):  
Sara García-Davis ◽  
Ezequiel Viveros-Valdez ◽  
Ana Díaz-Marrero ◽  
José Fernández ◽  
Daniel Valencia-Mercado ◽  
...  

Macroalgae represent an important source of bioactive compounds with a wide range of biotechnological applications. Overall, the discovery of effective cytotoxic compounds with pharmaceutical potential is a significant challenge, mostly because they are scarce in nature or their total synthesis is not efficient, while the bioprospecting models currently used do not predict clinical responses. Given this context, we used three-dimensional (3D) cultures of human breast cancer explants to evaluate the antitumoral effect of laurinterol, the major compound of an ethanolic extract of Laurencia johnstonii. To this end, we evaluated the metabolic and histopathological effects of the crude extract of L. johnstonii and laurinterol on Vero and MCF-7 cells, in addition to breast cancer explants. We observed a dose-dependent inhibition of the metabolic activity, as well as morphologic and nuclear changes characteristic of apoptosis. On the other hand, a reduced metabolic viability and marked necrosis areas were observed in breast cancer explants incubated with the crude extract, while explants treated with laurinterol exhibited a heterogeneous response which was associated with the individual response of each human tumor sample. This study supports the cytotoxic and antitumoral effects of laurinterol in in vitro cell cultures and in ex vivo organotypic cultures of human breast cancer explants.

Author(s):  
G. Kasnic ◽  
S. E. Stewart ◽  
C. Urbanski

We have reported the maturation of an intracisternal A-type particle in murine plasma cell tumor cultures and three human tumor cell cultures (rhabdomyosarcoma, lung adenocarcinoma, and osteogenic sarcoma) after IUDR-DMSO activation. In all of these studies the A-type particle seems to develop into a form with an electron dense nucleoid, presumably mature, which is also intracisternal. A similar intracisternal A-type particle has been described in leukemic guinea pigs. Although no biological activity has yet been demonstrated for these particles, on morphologic grounds, and by the manner in which they develop within the cell, they may represent members of the same family of viruses.


2015 ◽  
Vol 10 (2) ◽  
pp. 443
Author(s):  
Fiaz Alam ◽  
Qazi Najam us Saqib ◽  
Abdul Waheed

<p>This study was conducted to evaluate <em>Gaultheria trichophylla</em> crude extract and respective saponins fraction against human breast cancer cell lines. In MTT assay, cell viability was inhibited by <em>G. trichophylla</em> crude extract (500 µg/mL) and saponins (200 µg/mL) in a dose dependent manner with maximum inhibition of (82% and 85%) and (71% and 42%) against MCF-7 and MDA MB-468, respectively. In neutral red uptake assay, the cell viability was inhibited by crude extract and saponins (100 µg/mL) in a similar manner with maximum inhibitions of (96% and 93%) and (87% and 61%) against MCF-7 and MDA MB-468, respectively, with respect to 91% and 93% inhibition by actinomycin-D (4 µM). The DAPI (4',6-diamidino-2-phenylindole) (10 µg/mL) staining of MCF-7 cells treated with crude saponins showed shrunken nuclei with apparent nuclear fragmentation indicating apoptosis and in contrast, MDA MB-468 showed necrosis mode of cell death. The study exhibited that the <em>G. trichophylla</em> provides new evidences to further explore this plant for the novel targets in anticancer drug development.</p>


2009 ◽  
Vol 23 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Line R. Jensen ◽  
Else M. Huuse ◽  
Tone F. Bathen ◽  
Pål E. Goa ◽  
Anna M. Bofin ◽  
...  

2020 ◽  
Author(s):  
Ana Luísa Cartaxo ◽  
Marta F Estrada ◽  
Giacomo Domenici ◽  
Ruben Roque ◽  
Fernanda Silva ◽  
...  

Abstract Background Estrogen receptor α (ERα) signaling is a defining and driving event in most breast cancers; ERα is detected in malignant epithelial cells of 75% of all breast cancers (classified as ER-positive breast cancer) and, in these cases, ERα targeting is the main therapeutic strategy. However, the biological determinants of ERα heterogeneity and the mechanisms underlying therapeutic resistance are still elusive, hampered by the challenges in developing experimental models recapitulative of intra-tumoral heterogeneity and in which ERα signaling is sustained. Ex vivo cultures of human breast cancer tissue have been proposed to retain the original tissue architecture, epithelial and stromal cell components and ERα. However, loss of cellularity, viability and ERα expression are well-known culture-related phenomena. Methods BC samples were collected and brought to the laboratory. Then they were minced, enzymatically digested, entrapped in alginate and cultured for one month. The histological architecture, cellular composition and cell proliferation of tissue microstructures were assessed by immunohistochemistry. Cell viability was assessed by measurement of cell metabolic activity. The presence of ERα was accessed by immunohistochemistry and RT-qPCR and its functionality evaluated by challenge with 17−β−estradiol and fulvestrant, respectively. Results We describe a strategy based on entrapment of breast cancer tissue microstructures in alginate capsules and their long-term culture under agitation, successfully applied to tissue obtained from 63 breast cancer patients. After one month in culture, the architectural features of the encapsulated tissue microstructures were similar to the original patient tumors: epithelial, stromal and endothelial compartments were maintained with an average of 97 of cell viability compared to day 0. In ERα-positive cases, fibers of collagen, the main extracellular matrix component in vivo , were preserved. ERα expression was retained at gene and protein levels and response to ERα stimulation and inhibition was observed at the level of downstream targets, demonstrating active ER signaling. Conclusions The proposed model system is a new methodology to study ex vivo breast cancer biology, in particular ERα signaling. It is suitable for interrogating the long-term effects of anti-endocrine drugs in a set-up that closely resembles the original tumor microenvironment, with potential application in pre- and co-clinical assays of ERα-positive breast cancer.


Biology Open ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. bio051649
Author(s):  
Akash Gupta ◽  
Geetanjali Gupta ◽  
Rajeshwari R. Mehta ◽  
David Z. Ivancic ◽  
Rashidra R. Walker ◽  
...  

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Allison Dugan ◽  
Michelle Carroll-Turpin ◽  
Samuel Crooks ◽  
Songlin Zhang ◽  
Michael Mathis ◽  
...  

2000 ◽  
Vol 47 (1) ◽  
pp. 149-156 ◽  
Author(s):  
B Falkiewicz ◽  
C M Schlotter ◽  
U Bosse ◽  
K Bielawski ◽  
U Vogt

A pilot study on relationships of selected molecular factors (c-myc oncogene average gene copy numbers (AGCN); serum CEA and CA 15.3 antigen levels; tumor cells' DNA values), to the ex vivo chemosensitivity of primary female human breast cancer in a modified adenosine triphosphate cell viability chemosensitivity assay (ATP-CVA), was performed. Four drug combinations were tested. A group of 75 cases of female primary breast cancer was assessed. Numerous correlations were found among molecular factors tested but none, with the exception of tumor grading, of these reflected ex vivo chemosensitivity of tumors tested. The results suggest that the parameters tested may not be important factors related to adjuvant chemoresponsiveness of primary human breast cancer to tested drug combinations.


Sign in / Sign up

Export Citation Format

Share Document