scholarly journals MCAK regulates chromosome alignment but is not necessary for preventing aneuploidy in mouse oocyte meiosis I

Development ◽  
2010 ◽  
Vol 137 (13) ◽  
pp. 2133-2138 ◽  
Author(s):  
C. Illingworth ◽  
N. Pirmadjid ◽  
P. Serhal ◽  
K. Howe ◽  
G. FitzHarris
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Warif El Yakoubi ◽  
Eulalie Buffin ◽  
Damien Cladière ◽  
Yulia Gryaznova ◽  
Inés Berenguer ◽  
...  

Author(s):  
Jian Li ◽  
Hong-Yong Zhang ◽  
Feng Wang ◽  
Qing-Yuan Sun ◽  
Wei-Ping Qian

Recently, we have reported that the cyclin B2/CDK1 complex regulates homologous chromosome segregation through inhibiting separase activity in oocyte meiosis I, which further elucidates the compensation of cyclin B2 on cyclin B1’s function in meiosis I. However, whether cyclin B2/CDK1 complex also negatively regulates separase activity during oocyte meiosis II remains unknown. In the present study, we investigated the function of cyclin B2 in meiosis II of oocyte. We found that stable cyclin B2 expression impeded segregation of sister chromatids after oocyte parthenogenetic activation. Consistently, stable cyclin B2 inhibited separase activation, while introduction of non-phosphorylatable separase mutant rescued chromatid separation in the stable cyclin B2-expressed oocytes. Therefore, the cyclin B2/CDK1 complex conservatively regulates separase activity via inhibitory phosphorylation of separase in both meiosis I and meiosis II of mouse oocyte.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yi-Feng Yuan ◽  
Yi-Xin Ren ◽  
Peng Yuan ◽  
Li-Ying Yan ◽  
Jie Qiao

Development ◽  
2019 ◽  
Vol 146 (23) ◽  
pp. dev182519 ◽  
Author(s):  
Jian Li ◽  
Ying-Chun Ouyang ◽  
Chun-Hui Zhang ◽  
Wei-Ping Qian ◽  
Qing-Yuan Sun

2011 ◽  
Vol 17 (3) ◽  
pp. 431-439 ◽  
Author(s):  
Shao-Chen Sun ◽  
Ding-Xiao Zhang ◽  
Seung-Eun Lee ◽  
Yong-Nan Xu ◽  
Nam-Hyung Kim

AbstractNdc80 (called Hec1 in human), the core component of the Ndc80 complex, is involved in regulation of both kinetochore-microtubule interactions and the spindle assembly checkpoint in mitosis; however, its role in meiosis remains unclear. Here, we report Ndc80 expression, localization, and possible functions in mouse oocyte meiosis. Ndc80 mRNA levels gradually increased during meiosis. Immunofluorescent staining showed that Ndc80 was restricted to the germinal vesicle and associated with spindle microtubules from the Pro-MI to MII stages. Ndc80 was localized on microtubules and asters in the cytoplasm after taxol treatment, while Ndc80 staining was diffuse after disruption of microtubules by nocodazole treatment, confirming its microtubule localization. Disruption of Ndc80 function by either siRNA injection or antibody injection resulted in severe chromosome misalignment, spindle disruption, and precocious polar body extrusion. Our data show a unique localization pattern of Ndc80 in mouse oocytes and suggest that Ndc80 may be required for chromosome alignment and spindle organization, and may regulate spindle checkpoint activity during mouse oocyte meiosis.


2021 ◽  
Author(s):  
Nicole J Camlin ◽  
Ilakkiya Venkatachalam ◽  
Janice P Evans

Tightly controlled fluctuations in kinase and phosphatase activity play important roles in regulating M-Phase transitions (e.g., G2/M). Protein Phosphatase 1 (PP1) is one of these phosphatases, with oscillations in activity driving mitotic M-Phase entry, progression, and exit, with evidence from a variety of experimental systems pointing to roles in meiosis as well. Here we report that PP1 is important for M-Phase transitions through mouse oocyte meiosis. Employing a unique small-molecule approach to inhibit or activate PP1 at distinct phases of mouse oocyte meiosis, we found that aberrations in normal cyclical PP1 activity leads to meiotic abnormalities. We report here that temporal control of PP1 activity is essential for G2/M transition, metaphase I/anaphase I transition, and the formation of a normal metaphase II oocyte. Our data also reveal that inappropriate activation of PP1 is more deleterious at G2/M transition than at prometaphase I-to-metaphase I, and that an active pool of PP1 during prometaphase I is vital for metaphase I/anaphase I transition and metaphase II chromosome alignment. Taken together, these results establish that loss of oscillations in PP1 activity causes a range of severe meiotic defects, pointing to essential roles for PP1 in oocytes and female fertility, and more broadly, M-Phase regulation.


2013 ◽  
Vol 28 (3) ◽  
pp. 1435-1445 ◽  
Author(s):  
Liang Zhang ◽  
Xiaojing Hou ◽  
Rujun Ma ◽  
Kelle Moley ◽  
Tim Schedi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document