Localization of transcripts from the wingless gene in whole Drosophila embryos

Development ◽  
1988 ◽  
Vol 103 (2) ◽  
pp. 289-298 ◽  
Author(s):  
N.E. Baker

In situ hybridization has been used to detect transcription in whole Drosophila embryos. Improved results have been obtained by incubating the hybridized embryos in liquid emulsion prior to autoradiographic exposure. This technique has been used to map the distribution of transcripts from the segment-polarity gene wingless (wg), which is transcribed in a stripe in each segment of the trunk region. By the extended germband stage additional areas of transcription in the head and caudal regions define a total of 21 domains, comprising the foregut, six regions in the head, three thoracic and ten abdominal segments, and the hindgut. At the end of the extended germband stage, the pattern of wg transcription is no longer uniform in the dorsoventral axis: wg transcripts are absent from the lateral epidermis. This pattern of wg transcription is discussed with particular regard to the segmentation of the terminalia. Also it is suggested that the dorsoventral reorganization could be related to the specification of the imaginal disc primordia.

Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 489-497 ◽  
Author(s):  
N.E. Baker

Wingless (wg) is a segment-polarity gene in Drosophila which is related to the murine proto-oncogene int1. In Drosophila embryos, wg transcription defines part of each parasegment. In situ hybridization shows that wg is also expressed in the imaginal discs which give rise to the adult during metamorphosis. Transcripts are localized in the apical cytoplasm of disc cells, and accumulate in different patterns in dorsal and ventral discs. The wgCX3 mutation produces morphological defect in the adult structures derived from these imaginal discs. The results show that wg is involved in the development of the adult, as well as the embryo, but that the imaginal discs do not express this segment-polarity gene in an identical pattern to the embryonic segments.


Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A.L. Felsenfeld ◽  
J.A. Kennison

We describe a dominant gain-of-function allele of the segment polarity gene hedgehog. This mutation causes ectopic expression of hedgehog mRNA in the anterior compartment of wing discs, leading to overgrowth of tissue in the anterior of the wing and partial duplication of distal wing structures. The posterior compartment of the wing is unaffected. Other imaginal derivatives are affected, resulting in duplications of legs and antennae and malformations of eyes. In mutant imaginal wing discs, expression of the decapentaplegic gene, which is implicated in the hedgehog signaling pathway, is also perturbed. The results suggest that hedgehog protein acts in the wing as a signal to instruct neighboring cells to adopt fates appropriate to the region of the wing just anterior to the compartmental boundary.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 987-998 ◽  
Author(s):  
J. Capdevila ◽  
F. Pariente ◽  
J. Sampedro ◽  
J.L. Alonso ◽  
I. Guerrero

The product of the segment polarity gene patched is a transmembrane protein involved in the cell communication processes that establish polarity within the embryonic segments of Drosophila. Monoclonal antibodies have been raised against the patched protein, and by immunoelectron microscopy part of the patched staining is found associated with discrete regions of the lateral plasma membrane of the embryonic epidermal cells. Using a mutation affecting endocytosis (shibire) we find that patched is a membrane-bound protein, which is internalized by endocytosis, and that the preferential sites of accumulation resemble the described localization of the cell-cell adhesive junctions of the epidermal cells. patched partially co-localizes with the wingless protein in the wingless-expressing and nearby cells, in structures that seem to be endocytic vesicles. These data suggest the interaction of patched protein with elements of the reception complex of wingless, as a way to control the wingless expression.


Development ◽  
2002 ◽  
Vol 129 (4) ◽  
pp. 843-851 ◽  
Author(s):  
Craig A. Micchelli ◽  
Inge The ◽  
Erica Selva ◽  
Vladic Mogila ◽  
Norbert Perrimon

Members of the Hedgehog (Hh) family encode secreted molecules that act as potent organizers during vertebrate and invertebrate development. Post-translational modification regulates both the range and efficacy of Hh protein. One such modification is the acylation of the N-terminal cysteine of Hh. In a screen for zygotic lethal mutations associated with maternal effects, we have identified rasp, a novel Drosophila segment polarity gene. Analysis of the rasp mutant phenotype, in both the embryo and wing imaginal disc demonstrates that rasp does not disrupt Wnt/Wingless signaling but is specifically required for Hh signaling. The requirement of rasp is restricted only to those cells that produce Hh; hh transcription, protein levels and distribution are not affected by the loss of rasp. Molecular analysis reveals that rasp encodes a multipass transmembrane protein that has homology to a family of membrane bound O-acyl transferases. Our results suggest that Rasp-dependent acylation is necessary to generate a fully active Hh protein.


Development ◽  
1991 ◽  
Vol 111 (4) ◽  
pp. 1029-1043 ◽  
Author(s):  
M. Peifer ◽  
C. Rauskolb ◽  
M. Williams ◽  
B. Riggleman ◽  
E. Wieschaus

The segment polarity genes of Drosophila were initially defined as genes required for pattern formation within each embryonic segment. Some of these genes also function to establish the pattern of the adult cuticle. We have examined the role of the armadillo (arm) gene in this latter process. We confirmed and extended earlier findings that arm and the segment polarity gene wingless are very similar in their effects on embryonic development. We next discuss the role of arm in pattern formation in the imaginal discs, as determined by using a pupal lethal allele, by analyzing clones of arm mutant tissue in imaginal discs, and by using a transposon carrying arm to produce adults with a reduced level of arm. Together, these experiments established that arm is required for the development of all imaginal discs. The requirement for arm varies along the dorsal-ventral and proximal-distal axes. Cells that require the highest levels of arm are those that express the wingless gene. Further, animals with reduced arm levels have phenotypes that resemble those of weak alleles of wingless. We present a description of the patterns of arm protein accumulation in imaginal discs. Finally, we discuss the implications of these results for the role of arm and wingless in pattern formation.


BioTechniques ◽  
1996 ◽  
Vol 20 (5) ◽  
pp. 748-750 ◽  
Author(s):  
Sarah C. Hughes ◽  
Benedicte Saulier-Le Drean ◽  
Izhar Livne-Bar ◽  
Henry M. Krause

Sign in / Sign up

Export Citation Format

Share Document