segment polarity genes
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 3)

H-INDEX

17
(FIVE YEARS 0)

Author(s):  
Oren Lev ◽  
Ariel D. Chipman

The three anterior-most segments in arthropods contain the ganglia that make up the arthropod brain. These segments, the pre-gnathal segments (PGS), are known to exhibit many developmental differences to other segments, believed to reflect their divergent morphology. We have analyzed the expression and function of the genes involved in the conserved segment-polarity network, including genes from the Wnt and Hedgehog pathways, in the PGS, compared with the trunk segments, in the hemimetabolous insect Oncopeltus fasciatus. Gene function was tested by manipulating expression through RNA interference against components of the two pathways. We show that there are fundamental differences in the expression patterns of the segment polarity genes, in the timing of their expression and in the interactions among them in the process of pre-gnathal segment generation, relative to all other segments. We argue that given these differences, the PGS should not be considered serially homologous to trunk segments. This realization raises important questions about the differing evolutionary ancestry of different regions of the arthropod head.


Gigabyte ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sherry Miller ◽  
Teresa D. Shippy ◽  
Prashant S. Hosmani ◽  
Mirella Flores-Gonzalez ◽  
Lukas A. Mueller ◽  
...  

Insects have a segmented body plan that is established during embryogenesis when the anterior–posterior (A–P) axis is divided into repeated units by a cascade of gene expression. The cascade is initiated by protein gradients created by translation of maternally provided mRNAs, localized at the anterior and posterior poles of the embryo. Combinations of these proteins activate specific gap genes to divide the embryo into distinct regions along the anterior–posterior axis. Gap genes then activate pair-rule genes, which are usually expressed in parts of every other segment. The pair-rule genes, in turn, activate expression of segment polarity genes in a portion of each segment. The segmentation genes are generally conserved among insects, although there is considerable variation in how they are deployed. We annotated 25 segmentation gene homologs in the Asian citrus psyllid, Diaphorina citri. Most of the genes expected to be present in D. citri based on their phylogenetic distribution in other insects were identified and annotated. Two exceptions were eagle and invected, which are present in at least some hemipterans, but were not found in D. citri. Many of the segmentation pathway genes are likely to be essential for D. citri development, and thus they may be useful targets for gene-based pest control methods.


2020 ◽  
Author(s):  
Sherry Miller ◽  
Teresa D. Shippy ◽  
Prashant S Hosmani ◽  
Mirella Flores-Gonzalez ◽  
Lukas A Mueller ◽  
...  

AbstractInsects have a segmented body plan that is established during embryogenesis when the anterior-posterior (A-P) axis is divided into repeated units by a cascade of gene expression. The cascade is initiated by protein gradients created by translation of maternally provided mRNAs, localized at the anterior and posterior poles of the embryo. Particular combinations of these proteins activate specific gap genes to divide the embryo into distinct regions along the A-P axis. Gap genes then activate pair-rule genes, which are usually expressed in part of every other segment. The pair-rule genes, in turn, activate expression of segment polarity genes in a portion of each segment. The segmentation genes are generally conserved among insects, although there is considerable variation in how they are deployed. We annotated 24 segmentation gene homologs in the Asian citrus psyllid, Diaphorina citri. We identified most of the genes that were expected to be present based on known phylogenetic distribution. Two exceptions were eagle and invected, which are present in at least some hemipterans, but were not identified in D. citri. Many of these genes are likely to be essential for D. citri development and thus may be useful targets for pest control methods.


2018 ◽  
Author(s):  
Tzach Auman ◽  
Ariel D. Chipman

AbstractOne of the best studied developmental processes is the Drosophila segmentation cascade. However, this cascade is generally considered to be highly derived and unusual. We present a detailed analysis of the sequential segmentation cascade of the milkweed bug Oncopletus fasciatus, as a comparison to Drosophila, with the aim of reconstructing the evolution of insect segmentation. We analyzed the expression of 12 genes, representing different phases during segmentation. We reconstruct the spatio-temporal relationships among these genes And their roles and position in the cascade. We conclude that sequential segmentation in the Oncopeltus germband includes three phases: Primary pair-rule genes generate segmental gene expression in the anterior growth zone, followed by secondary pair-rule genes, expressed in the transition between the growth zone and the segmented germband. Segment polarity genes are expressed in the segmented germband. This process generates a single-segment periodicity, and does not have a double-segment pattern at any stage.


2016 ◽  
Author(s):  
Bruno C. Vellutini ◽  
Andreas Hejnol

AbstractThe diverse and complex developmental mechanisms of segmentation have been more thoroughly studied in arthropods, vertebrates and annelids—distantly related animals considered to be segmented. Far less is known about the role of “segmentation genes” in organisms that lack a segmented body. Here we investigate the expression of the arthropod segment polarity genes engrailed, wnt1 and hedgehog in the development of brachiopods—marine invertebrates without a subdivided trunk but closely related to the segmented annelids. We found that a stripe of engrailed expression demarcates the ectodermal boundary that delimits the anterior region of Terebratalia transversa and Novocrania anomala embryos. In T. transversa, this engrailed domain is abutted by a stripe of wnt1 expression in a pattern similar to the parasegment boundaries of insects—except for the expression of hedgehog, which is restricted to endodermal tissues of the brachiopod embryos. We found that pax6 and pax2/5/8, putative regulators of engrailed, also demarcate the anterior boundary in the two species, indicating these genes might be involved in the anterior patterning of brachiopod larvae. In a comparative phylogenetic context, these findings suggest that bilaterians might share an ancestral, non-segmental domain of engrailed expression during early embryogenesis.


2008 ◽  
Vol 5 (suppl_1) ◽  
Author(s):  
Madalena Chaves ◽  
Réka Albert

The segment polarity gene family, and its gene regulatory network, is at the basis of Drosophila embryonic development. The network's capacity for generating and robustly maintaining a specific gene expression pattern has been investigated through mathematical modelling. The models have provided several useful insights by suggesting essential network links, or uncovering the importance of the relative time scales of different biological processes in the formation of the segment polarity genes' expression patterns. But the developmental pattern formation process raises many other questions. Two of these questions are analysed here: the dependence of the signalling protein sloppy paired on the segment polarity genes and the effect of cell division on the segment polarity genes' expression patterns. This study suggests that cell division increases the robustness of the segment polarity network with respect to perturbations in biological processes.


2006 ◽  
Vol 292 (2) ◽  
pp. 418-429 ◽  
Author(s):  
Marita Buescher ◽  
Murni Tio ◽  
Guy Tear ◽  
Paul M. Overton ◽  
William J. Brook ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document