Cloning and characterization of a myoblast cell surface antigen defined by 24.1D5 monoclonal antibody

Development ◽  
1989 ◽  
Vol 105 (4) ◽  
pp. 723-731 ◽  
Author(s):  
H.J. Gower ◽  
S.E. Moore ◽  
G. Dickson ◽  
V.L. Elsom ◽  
R. Nayak ◽  
...  

Monoclonal antibody 24.1D5 reacts specifically with an epitope expressed on the cell surface of mononucleate myoblasts in primary cultures of human skeletal muscle cells, but not with either multinucleate myotubes or fibroblasts. Polypeptides of 60 and 100 X 10(3) Mr were identified by immunoblotting with the McAb. Human muscle cDNAs encoding the 24.1D5 epitope were used to study further the structure and expression of 24.1D5 during skeletal muscle development. Two mRNA species of 3.0 and 2.5 kb were identified in primary cultures of human skeletal muscle and in mouse muscle cell lines. The levels of both transcripts decreased during myotube formation in vitro and were similarly decreased during myogenesis in the mouse embryo. 24.1D5 mRNAs were expressed by multipotential cells and myoblast derivatives of the mouse embryonic cell line C3H10T1/2, suggesting that 24.1D5 is expressed at an early stage during skeletal muscle development.

RSC Advances ◽  
2018 ◽  
Vol 8 (22) ◽  
pp. 12409-12419
Author(s):  
Di Zhou ◽  
Houqiang Xu ◽  
Wei Chen ◽  
Yuanyuan Wang ◽  
Ming Zhang ◽  
...  

The MyoD1 gene plays a key role in regulating the myoblast differentiation process in the early stage of skeletal muscle development.


2001 ◽  
Vol 281 (1) ◽  
pp. E72-E80 ◽  
Author(s):  
Laureta M. Perriott ◽  
Tetsuro Kono ◽  
Richard R. Whitesell ◽  
Susan M. Knobel ◽  
David W. Piston ◽  
...  

To use primary cultures of human skeletal muscle cells to establish defects in glucose metabolism that underlie clinical insulin resistance, it is necessary to define the rate-determining steps in glucose metabolism and to improve the insulin response attained in previous studies. We modified experimental conditions to achieve an insulin effect on 3- O-methylglucose transport that was more than twofold over basal. Glucose phosphorylation by hexokinase limits glucose metabolism in these cells, because the apparent Michaelis-Menten constant of coupled glucose transport and phosphorylation is intermediate between that of transport and that of the hexokinase and because rates of 2-deoxyglucose uptake and phosphorylation are less than those of glucose. The latter reflects a preference of hexokinase for glucose over 2-deoxyglucose. Cellular NAD(P)H autofluorescence, measured using two-photon excitation microscopy, is both sensitive to insulin and indicative of additional distal control steps in glucose metabolism. Whereas the predominant effect of insulin in human skeletal muscle cells is to enhance glucose transport, phosphorylation, and steps beyond, it also determines the overall rate of glucose metabolism.


Cytokine ◽  
2011 ◽  
Vol 55 (1) ◽  
pp. 104-109 ◽  
Author(s):  
Marissa K. Caldow ◽  
Gregory R. Steinberg ◽  
David Cameron-Smith

1989 ◽  
Vol 67 (2-3) ◽  
pp. 128-136 ◽  
Author(s):  
Shashikant Champaneria ◽  
Paul C. Holland ◽  
George Karpati ◽  
Claude Guérin

Pure populations of myogenic cells were obtained by cloning satellite cells from human skeletal muscle biopsies. Cell-surface glycoproteins at various stages of myogenesis were analysed by one- and two-dimensional gel electrophoresis. A total of 14 distinct proteins were detectable at the cell surface, on the basis of their susceptibility to desialation by exogenous neuraminidase or their iodination by exogenous lactoperoxidase. Reproducible changes in lectin binding or iodination of eight of these proteins occurred during myogenesis. Only two of the developmentally regulated proteins were components of the detergent-insoluble extracellular matrix fraction. Developmental regulation of these two proteins was unaffected by growth of cultures in 5-bromo-2′-deoxyuridine to inhibit myogenesis. In contrast, developmental regulation of the other cell-surface proteins was inhibited by growth in 5-bromo-2′-deoxyuridine, suggesting that changes in these proteins are tightly coupled to satellite cell differentiation. These studies represent the first systematic analysis of the surface proteins of pure, clonally derived, primary cultures of normal myogenic cells.Key words: satellite cells, myogenesis, myoblast, glycoproteins, cell surface.


2018 ◽  
Author(s):  
S Höckele ◽  
P Huypens ◽  
C Hoffmann ◽  
T Jeske ◽  
M Hastreiter ◽  
...  

Diabetes ◽  
1997 ◽  
Vol 46 (12) ◽  
pp. 1965-1969 ◽  
Author(s):  
S. Lund ◽  
G. D. Holman ◽  
J. R. Zierath ◽  
J. Rincon ◽  
L. A. Nolte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document