scholarly journals Positive Regulation of Myogenic bHLH Factors and Skeletal Muscle Development by the Cell Surface Receptor CDO

2004 ◽  
Vol 7 (6) ◽  
pp. 843-854 ◽  
Author(s):  
Francesca Cole ◽  
Wei Zhang ◽  
Assaf Geyra ◽  
Jong-Sun Kang ◽  
Robert S. Krauss
PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e50477 ◽  
Author(s):  
Àngels Díaz-Ramos ◽  
Anna Roig-Borrellas ◽  
Ana García-Melero ◽  
Ana Llorens ◽  
Roser López-Alemany

Development ◽  
1989 ◽  
Vol 105 (4) ◽  
pp. 723-731 ◽  
Author(s):  
H.J. Gower ◽  
S.E. Moore ◽  
G. Dickson ◽  
V.L. Elsom ◽  
R. Nayak ◽  
...  

Monoclonal antibody 24.1D5 reacts specifically with an epitope expressed on the cell surface of mononucleate myoblasts in primary cultures of human skeletal muscle cells, but not with either multinucleate myotubes or fibroblasts. Polypeptides of 60 and 100 X 10(3) Mr were identified by immunoblotting with the McAb. Human muscle cDNAs encoding the 24.1D5 epitope were used to study further the structure and expression of 24.1D5 during skeletal muscle development. Two mRNA species of 3.0 and 2.5 kb were identified in primary cultures of human skeletal muscle and in mouse muscle cell lines. The levels of both transcripts decreased during myotube formation in vitro and were similarly decreased during myogenesis in the mouse embryo. 24.1D5 mRNAs were expressed by multipotential cells and myoblast derivatives of the mouse embryonic cell line C3H10T1/2, suggesting that 24.1D5 is expressed at an early stage during skeletal muscle development.


2001 ◽  
Vol 120 (5) ◽  
pp. A18-A19
Author(s):  
B DIECKGRAEFE ◽  
C HOUCHEN ◽  
H ZHANG

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 835
Author(s):  
Mohammadreza Mohammadabadi ◽  
Farhad Bordbar ◽  
Just Jensen ◽  
Min Du ◽  
Wei Guo

Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.


Sign in / Sign up

Export Citation Format

Share Document