Elements of the fruitless locus regulate development of the muscle of Lawrence, a male-specific structure in the abdomen of Drosophila melanogaster adults

Development ◽  
1991 ◽  
Vol 113 (3) ◽  
pp. 879-890 ◽  
Author(s):  
D.A. Gailey ◽  
B.J. Taylor ◽  
J.C. Hall

A genetically defined element of the fruitless (fru) locus in Drosophila melanogaster regulates the development of a male-specific muscle spanning the fifth abdominal segment in adult males, the ‘muscle of Lawrence’ (MOL). The region is defined by two cytological deletions, each with a breakpoint that co-maps with previously described mutant courtship phenotypes at cytogenetic interval 91B on the third chromosome. Flies that carry both of these deletions are viable, and males express abnormalities of courtship similar to those caused by the fru inversion breakpoint at 91B. In addition, these double-deletion males show the complete absence of the MOL, suggesting that they have little or no gene expression of a postulated MOL determinant; the musculature in the fifth abdominal segment of these mutants to indistinguishable from that of a normal female. Other mutant combinations that produce fruitless courtship phenotypes—including deletion and inversion breakpoints, and a marked transposon inserted at 91B—produce intermediate forms of the MOL. A new genetic variant, induced by imprecise excision of the marked transposon, is homozygous lethal and disrupts fru functions related to courtship and the MOL. The MOL is shown to be dispensable for fertility and is therefore not the causative factor of fru-induced behavioral sterility. These genetic variants and their phenotypic results are discussed with regard to a model for the organization of the fru locus.

Genetics ◽  
1992 ◽  
Vol 132 (1) ◽  
pp. 179-191
Author(s):  
B J Taylor

Abstract A pair of muscles span the fifth abdominal segment of male but not female Drosophila melanogaster adults. To establish whether genes involved in the development of other sexually dimorphic tissues controlled the differentiation of sex-specific muscles, flies mutant for five known sex-determining genes were examined for the occurrence of male-specific abdominal muscles. Female flies mutant for alleles of Sex-lethal, defective in sex determination, or null alleles of transformer or transformer-2 are converted into phenotypic males that formed male-specific abdominal muscles. Both male and female flies, when mutant for null alleles of doublesex, develop as nearly identical intersexes in other somatic characteristics. Male doublesex flies produced the male-specific muscles, whereas female doublesex flies lacked them. Female flies, even when they inappropriately expressed the male-specific form of doublesex mRNA, failed to produce the male-specific muscles. Therefore, the wild-type products of the genes Sex-lethal, transformer and transformer-2 act to prevent the differentiation of male-specific muscles in female flies. However, there is no role for the genes doublesex or intersex in either the generation of the male-specific muscles in males or their suppression in females.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2549-2557 ◽  
Author(s):  
D.A. Currie ◽  
M. Bate

The adult abdominal muscles in Drosophila are generated de novo during metamorphosis and form a simple and characteristic pattern. Throughout adult abdominal development there is a close association between nerves and myoblasts. However, the role of innervation in adult myogenesis is unclear. In males there is an additional muscle, which is unique to abdominal segment 5 (A5). This male specific muscle forms from the same pool of myoblasts as other dorsal muscles in A5 but develops several distinctive characteristics. Previous work indicates the genotype of the innervation of this male specific muscle may play a crucial role in its proper development, although the part played by innervation in the development of other muscles is unknown. Here we test directly the function of innervation in adult myogenesis in general and for the development and differentiation of the male specific muscle in particular. After denervation at the onset of metamorphosis, muscle growth is impaired although the overall muscle pattern continues to develop. Uniquely, the male specific muscle fails to form. Our results indicate that there is an essential role for innervation during the period of metamorphosis for the formation of a full complement of abdominal muscles and for muscle growth. Furthermore, innervation is absolutely required for the formation of the male specific muscle and the development of its special characteristics.


1998 ◽  
Vol 5 (1) ◽  
pp. 157-165 ◽  
Author(s):  
Wendi S. Neckameyer

Depletion of dopamine in Drosophila melanogaster adult males, accomplished through systemic introduction of the tyrosine hydroxylase inhibitor 3-iodo-tyrosine, severely impaired the ability of these flies to modify their courtship responses to immature males. Mature males, when first exposed to immature males, will perform courtship rituals; the intensity and duration of this behavior rapidly diminshes with time. Dopamine is also required for normal female sexual receptivity; dopamine-depleted females show increased latency to copulation. One kilobase of 5′ upstream information from theDrosophila tyrosine hydroxylase (DTH) gene, when fused to theEscherichia coli β-galactosidase reporter and transduced into the genome of Drosophila melanogaster, is capable of directing expression of the reporter gene in the mushroom bodies, which are believed to mediate learning acquisition and memory retention in flies. Ablation of mushroom bodies by treatment of newly hatched larva with hydroxyurea resulted in the inability of treated mature adult males to cease courtship when placed with untreated immature males. However, functional mushroom bodies were not required for the dopaminergic modulation of an innate behavior, female sexual receptivity. These data suggest that dopamine acts as a signaling molecule within the mushroom bodies to mediate a simple form of learning.


Genetics ◽  
1979 ◽  
Vol 91 (3) ◽  
pp. 521-535
Author(s):  
John A Kiger ◽  
Eric Golanty

ABSTRACT Two cyclic AMP phosphodiesterase enzymes (E.C.3.1.4.17) are present in homogenates of adult Drosophila melanogaster. The two enzymes differ from one another in heat stability, affinity for Mg++, Ca++ activation and molecular weight. They do not differ markedly in their affinities for cyclic AMP, and both exhibit anomalous Michaelis-Menten kinetics. The more heatlabile enzyme is controlled in a dosage-dependent manner by chromomere 3D4 of the X chromosome and is absent in flies that are deficient for chromomere 3D4. Chromomere 3D4 is also necessary for the maintenance of normal cAMP levels, for male fertility, and for normal female fertility and oogenesis. The structural gene(s) for the more heat-stable enzyme is located outside of chromomeres 3C12-3D4. Whether 3D4 contains a structural gene, or a regulatory gene necessary for the presence of the labile enzyme, remains to be determined.


Development ◽  
2001 ◽  
Vol 128 (19) ◽  
pp. 3809-3817 ◽  
Author(s):  
Silvia Bongiorni ◽  
Milena Mazzuoli ◽  
Stefania Masci ◽  
Giorgio Prantera

The behavior of chromosomes during development of the mealybug Planococcus citri provides one of the most dramatic examples of facultative heterochromatization. In male embryos, the entire haploid paternal chromosome set becomes heterochromatic at mid-cleavage. Male mealybugs are thus functionally haploid, owing to heterochromatization (parahaploidy). To understand the mechanisms underlying facultative heterochromatization in male mealybugs, we have investigated the possible involvement of an HP-1-like protein in this process. HP-1 is a conserved, nonhistone chromosomal protein with a proposed role in heterochromatinization in other species. It was first identified in Drosophila melanogaster as a protein enriched in the constitutive heterochromatin of polytene chromosome. Using a monoclonal antibody raised against the Drosophila HP-1 in immunoblot and immunocytological experiments, we provide evidence for the presence of an HP-1-like in Planococcus citri males and females. In males, the HP-1-like protein is preferentially associated with the male-specific heterochromatin. In the developing male embryos, its appearance precedes the onset of heterochromatization. In females, the HP-1-like protein displays a scattered but reproducible localization pattern along chromosomes. The results indicate a role for an HP-1-like protein in the facultative heterochromatization process.


2000 ◽  
Vol 2 (8) ◽  
pp. 500-506 ◽  
Author(s):  
Kazue Usui-Aoki ◽  
Hiroki Ito ◽  
Kumiko Ui-Tei ◽  
Kuniaki Takahashi ◽  
Tamas Lukacsovich ◽  
...  

1991 ◽  
Vol 10 (1) ◽  
pp. 163-169 ◽  
Author(s):  
C. Samakovlis ◽  
P. Kylsten ◽  
D. A. Kimbrell ◽  
A. Engström ◽  
D. Hultmark

1982 ◽  
Vol 56 (1) ◽  
pp. 51-54 ◽  
Author(s):  
M. K. Shaw ◽  
D. A. Erasmus

ABSTRACTThe presence of vitelline cells in male Schistosoma mansoni from both mixed and single sex infections in mice is described.Ultrastructurally these vitelline cells resemble the mature, Stage 4 cells from normal female worms. As yet no developing vitelline cells (Stages 1 to 3) have been found. The cells do not appear to form complete lobules as in the female.


Sign in / Sign up

Export Citation Format

Share Document