Defective lens fiber differentiation and pancreatic tumorigenesis caused by ectopic expression of the cellular retinoic acid-binding protein I

Development ◽  
1993 ◽  
Vol 119 (2) ◽  
pp. 363-375
Author(s):  
A.V. Perez-Castro ◽  
V.T. Tran ◽  
M.C. Nguyen-Huu

All-trans retinoic acid, a metabolite of retinol, is a possible morphogen in vertebrate development. Two classes of cellular proteins, which specifically bind all-trans retinoic acid, are thought to mediate its action: the nuclear retinoic acid receptors (RAR alpha, beta, gamma), and the cytoplasmic binding proteins known as cellular retinoic acid-binding proteins I and II (CRABP I and II). The function of the retinoic acid receptors is to regulate gene transcription by binding to DNA in conjunction with the nuclear retinoid X receptors (RXR alpha, beta, gamma), which in turn have 9-cis retinoic acid as a ligand. Several lines of evidence suggest that the role of the cellular retinoic acid-binding proteins is to control the concentration of free retinoic acid reaching the nucleus in a given cell. Here, we have addressed the role of the cellular retinoic acid-binding protein I in development by ectopically expressing it in the mouse lens, under the control of the alpha A-crystallin promoter. We show that this ectopic expression interferes with the development of the lens and with the differentiation of the secondary lens fiber cells, causing cataract formation. These results suggest that correct regulation of intracellular retinoic acid concentration is required for normal eye development. In addition, the generated transgenic mice also present expression of the transgene in the pancreas and develop pancreatic carcinomas, suggesting that overexpression of the cellular retinoic acid-binding protein is the cause of the tumors. These results taken together provide evidence for a role of the cellular retinoic acid-binding protein in development and cell differentiation. The relevance of these findings to the possible role of the cellular retinoic acid-binding proteins in the transduction of the retinoic acid signal is discussed.

Development ◽  
1993 ◽  
Vol 117 (3) ◽  
pp. 835-845 ◽  
Author(s):  
K. Kawamura ◽  
K. Hara ◽  
S. Fujiwara

We have extracted retinoids from the budding tunicate Polyandrocarpa misakiensis and, using HPLC, identified some major peaks as cis-retinal, all-trans-retinal and all-trans-retinoic acid, of which cis-retinal was most abundant (~2 micromolar). In developing buds, the amount of cis-retinal was about one-fifth that of the adult animals. In those buds, aldehyde dehydrogenase, which could metabolize retinal in vitro, was expressed in epithelial cells and then in mesenchymal cells at the proximal extremity, that is, the future developmental field of the bud. Exogenous retinoic acid comparable to the endogenous level could induce an additional field at the distal end of the bud, resulting in a double monster. The induction always accompanied an ectopic expression of aldehyde dehydrogenase. The results of this work suggest that retinoic acid or related molecule(s) act as an endogenous trigger of morphallactic development of Polyandrocarpa buds.


Structure ◽  
1994 ◽  
Vol 2 (12) ◽  
pp. 1241-1258 ◽  
Author(s):  
Gerard J Kleywegt ◽  
Terese Bergfors ◽  
Hans Senn ◽  
Peter Le Motte ◽  
Bernard Gsell ◽  
...  

2002 ◽  
Vol 190 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Eun J. Kim ◽  
Young-Hee Kang ◽  
Beverly S. Schaffer ◽  
Leon A. Bach ◽  
Richard G. MacDonald ◽  
...  

2013 ◽  
Vol 25 (1) ◽  
pp. 19-25 ◽  
Author(s):  
Shawna D. Persaud ◽  
Yi-Wei Lin ◽  
Cheng-Ying Wu ◽  
Hiroyuki Kagechika ◽  
Li-Na Wei

Sign in / Sign up

Export Citation Format

Share Document