Transfilter evidence for a zone of polarizing activity participating in limb morphogenesis

Development ◽  
1981 ◽  
Vol 65 (1) ◽  
pp. 185-197
Author(s):  
Eero A. Kaprio

Barriers were inserted into stage-20 HH chick embryo wing buds to separate the zone of polarizing activity from the anterior two-thirds of the wing bud with its overlying apical ectodermal ridge. Half of the barrier length projected out of the wing bud at insertion. Sham-operated wing buds developed only occasionally into wings with cartilage deletions. After insertion of an impermeable membrane (Cellophane), the typical wing skeleton contained only a humerus and a radius. In order to differentiate between diffusion, cell contact and cell penetration, Nuclepore filters with pore sizes of 0·05 μm, 1·0 μm and 8·0 μm, respectively, were inserted. The typical wing skeleton after Nuclepore filter insertion was one with post-axial deletions. None, however, developed with complete distal deletions as after Cellophane. Deletions in the wing skeletons after Nuclepore insertion were the least with 1·0 μm filters and the most with 8·0 μm filteis. Elevation of the apical ectodermal ridge was noted until 18 h after the insertions. In none of the groups did the ridge flatten. The results suggest that the zone of polarizing activity does have a role in normal limb morphogenesis. The mechanism by which its morphogen spreads is diffusion rather than being mediated via cell contacts.

Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1385-1394 ◽  
Author(s):  
J.A. Helms ◽  
C.H. Kim ◽  
G. Eichele ◽  
C. Thaller

In the chick limb bud, the zone of polarizing activity controls limb patterning along the anteroposterior and proximodistal axes. Since retinoic acid can induce ectopic polarizing activity, we examined whether this molecule plays a role in the establishment of the endogenous zone of polarizing activity. Grafts of wing bud mesenchyme treated with physiologic doses of retinoic acid had weak polarizing activity but inclusion of a retinoic acid-exposed apical ectodermal ridge or of prospective wing bud ectoderm evoked strong polarizing activity. Likewise, polarizing activity of prospective wing mesenchyme was markedly enhanced by co-grafting either a retinoic acid-exposed apical ectodermal ridge or ectoderm from the wing region. This equivalence of ectoderm-mesenchyme interactions required for the establishment of polarizing activity in retinoic acid-treated wing buds and in prospective wing tissue, suggests a role of retinoic acid in the establishment of the zone of polarizing activity. We found that prospective wing bud tissue is a high-point of retinoic acid synthesis. Furthermore, retinoid receptor-specific antagonists blocked limb morphogenesis and down-regulated a polarizing signal, sonic hedgehog. Limb agenesis was reversed when antagonist-exposed wing buds were treated with retinoic acid. Our results demonstrate a role of retinoic acid in the establishment of the endogenous zone of polarizing activity.


1959 ◽  
Vol 1 (3) ◽  
pp. 281-301 ◽  
Author(s):  
John W. Saunders ◽  
Mary T. Gasseling ◽  
John M. Cairns

Development ◽  
1986 ◽  
Vol 95 (1) ◽  
pp. 147-168
Author(s):  
Jane Butler ◽  
Peter Cauwenbergs ◽  
Ethel Cosmos

The extent of interaction between brachial muscles and foreign (thoracic) nerves of the chick embryo was determined during an extended period of development in ovo from the perspectives of innervation pattern, function (motility analyses), muscle growth (quantitative analyses of muscle volume) and fibre-type expression (myosin-ATPase profiles). Results indicated that according to all parameters analysed, initially a compatible union existed between the foreign nerves and their muscle targets. During subsequent stages of development, deterioration of the once compatible relationship emerged, until eventually denervation of muscles, i.e. an actual loss of intramuscular nerve branches, was observed. The process of denervation, which proceeded at a differential rate among individual muscles, however was restricted to brachial muscles derived from the premuscle masses of the wing bud. In contrast, brachial muscles of myotomal origin were spared the fate of wing-bud-derived muscles and maintained a successful union with the foreign nerves.


Development ◽  
1977 ◽  
Vol 41 (1) ◽  
pp. 223-232
Author(s):  
John F. Fallon ◽  
Robert O. Kelley

The fine structure of the apical ectodermal ridge of five phylogenetically divergent orders of mammals and two orders of birds was examined using transmission and freeze fracture electron microscopy. Numerous large gap junctions were found in all apical ectodermal ridges studied. This was in contrast to the dorsal and ventral limb ectoderms where gap junctions were always very small and sparsely distributed. Thus, gap junctions distinguish the inductively active apical epithelium from the adjacent dorsal and ventral ectoderms. The distribution of gap junctions in the ridge was different between birds and mammals but characteristic within the two classes. Birds, with a pseudostratified columnar apical ridge, had the heaviest concentration of gap junctions at the base of each ridge cell close to the point where contact was made with the basal lamina. Whereas mammals, with a stratified cuboidal to squamous apical ridge, had a more uniform distribution of gap junctions throughout the apical epithelium. The difference in distribution for each class may reflect structural requirements for coupling of cells in the entire ridge. We propose that all cells of the apical ridges of birds and mammals are electrotonically and/or metabolically coupled and that this may be a requirement for the integrated function of the ridge during limb morphogenesis.


Development ◽  
1984 ◽  
Vol 80 (1) ◽  
pp. 105-125
Author(s):  
Madeleine Gumpel-Pinot ◽  
D. A. Ede ◽  
O. P. Flint

Fragments of quail wing bud containing myogenic cells of somitic origin and fragments of quail sphlanchopleural tissue were introduced into the interior of the wing bud of fowl embryo hosts. No movement of graft into host tissue occurred in the control, but myogenic cells from the quail wing bud fragments underwent long migrations in an apical direction to become incorporated in the developing musculature of the host. When the apical ectodermal ridge (AER), together with some subridge mesenchyme, was removed at the time of grafting, no such cell migration occurred. The capacity of grafted myogenic cells to migrate in the presence of AER persists to H.H. stage 25, when myogenesis has begun, but premyogenic cells in the somites, which normally migrate out into the early limb bud, do not migrate when somite fragments are grafted into the wing bud. Coelomic grafts of apical and proximal wing fragments showed that apical sections of quail wing buds become invaded by myogenic cells of the host, but grafts from proximal wing bud regions do not.


1974 ◽  
Vol 38 (1) ◽  
pp. 41-50 ◽  
Author(s):  
John W. Saunders ◽  
Cecelia Reuss
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document