Development of the optic nerve in Xenopus laevis

Development ◽  
1982 ◽  
Vol 72 (1) ◽  
pp. 225-249
Author(s):  
Charles Cima ◽  
Philip Grant

Development of the Xenopus laevis optic nerve was studied by light and electron microscopy from embryonic stage 26, before the retina has formed, to juveniles, 8 months post-metamorphic. Low-power EM photographs of sections through the retinal optic nerve (RON), middle optic nerve (MON) and chiasmatic optic nerve (CON) were prepared at different stages and the areas containing large axons (0·5 μm) were traced in optic nerve reconstructions. Ordering of fibre size along a dorsoventral axis was noted in the embryonic nerve, and this pattern persisted throughout development. Most large fibres, myelinated and unmyelinated, occupy an eccentric dorsocentral position in the MON while small axons are seen in a ventral peripheral crescent. In the CON, the dorsal one third to one half is occupied by large fibres while the ventral CON contains small fibres exclusively. If, as assumed, large axons are older than small axons (0·1–0·3 μm), then patterns of large and small axons along the nerve might reveal a chronotopic fibre ordering. Chronotopic ordering was confirmed by autoradiographic analysis of the distribution of old, labelled fibres and young, unlabelled newly arriving fibres in optic nerves between stage 51 and 57. The young—old labelling pattern corresponds to the small and large axon patterns respectively, in all sections of the optic nerve. Chronotopic ordering of fibres in the developing optic nerve can be explained, in part, by the dorsoventral asymmetric marginal growth of the developing retina and the phenomenon of fibre following as ganglion cell axons join near neighbour fascicles in the retina, converge at the optic disc and grow through the optic nerve.

Development ◽  
1982 ◽  
Vol 72 (1) ◽  
pp. 251-267
Author(s):  
Charles Cima ◽  
Philip Grant

We studied the time of origin, development and location of glial elements in the developing optic nerve of Xenopus with light and electron microscopy. The first cells acting as a primitive glia are ependymal cells lying dorsal to the chiasmatic optic nerve (CON) at Nieuwkoop & Faber (1956) NF stage 39. Later (stage 47/48), immature astrocyte cell bodies migrate from the periphery of the middle optic nerve (MON) into the central fibre mass along cytoplasmic processes extending from the outer glia limitans. Shortly thereafter, oligodendrocyte cell bodies appear in the centre of the fibre mass and myelination begins, first in the middle of the MON, spreading from the centre distally towards the chiasm and proximally to the retina. In late tadpoles myelinated fibres appear first in the CON then in the retinal optic nerve (RON) increasing markedly in juveniles and adults. Segment-specific patterns of glia and myelination appear during optic nerve development. During metamorphic climax, the ptic nerve shortens (Cullen & Webster, 1979), a process involving myelin and axon remodelling primarily in the MON. Neither the profound changes during metamorphosis, nor the processes of gliogenesis and myelination significantly alter the underlying chronotopic ordering in the tadpole nerve. In juvenile and adult optic nerves, however, as myelination and gliogenesis increase, and as more axons mature and grow in diameter, the dorsoventral chronotopic arrangement of axons becomes less apparent.


2017 ◽  
Vol 426 (2) ◽  
pp. 360-373 ◽  
Author(s):  
G.B. Whitworth ◽  
B.C. Misaghi ◽  
D.M. Rosenthal ◽  
E.A. Mills ◽  
D.J. Heinen ◽  
...  

1967 ◽  
Vol 2 (3) ◽  
pp. 349-358
Author(s):  
R. M. EAKIN ◽  
JANE A. WESTFALL ◽  
M. J. DENNIS

The eye of a nudibranch, Hermissenda crassicornis, was studied by light and electron microscopy. Three kinds of cells were observed: large sensory cells, each bearing at one end an array of microvilli (rhabdomere) and at the other end an axon which leaves the eye by the optic nerve; large pigmented supporting cells; and small epithelial cells, mostly corneal. There are five sensory cells, and the same number of nerve fibres in the optic nerve. The receptor cells contain an abundance of small vesicles, 600-800 Å in diameter. The lens is a spheroidal mass of osmiophilic, finely granular material. A basal lamina and a capsule of connective tissue enclose the eye. In some animals the eye is ‘infected’ with very small bodies, 4-5 µ in diameter, thought to be symbionts.


Development ◽  
1978 ◽  
Vol 44 (1) ◽  
pp. 281-295
Author(s):  
Paul-Emil Messier ◽  
C. Seguin

Xenopus laevis embryos of stages 14–20 were subjected, for periods of 5–330 min, to hydrostatic pressures ranging from 500 to 10000 psi. The specimens were fixed under corresponding pressures and their neuroepithelium was studied under light and electron microscopy. A pressure of 3000 psi, maintained for as long as 180 min, did not inhibit neurulation though it induced slight deformities of the neuroepithelium. A pressure of 4000 psi, applied for 180 min, disrupted the apical ring of microfilaments and blocked neurulation. The cells lost their dissymmetry. The effect was reversible. Lengthening the duration of treatment to 330 min caused the neuroepithelial cells to loose their microtubules and to become round. This situation was not reversible. Our results indicated that microfilaments are more sensitive than microtubules, that both organelles became increasingly sensitive as the exerted pressure was increased and that microtubules of older embryos exhibited a better resistance. Finally, we showed a correlation between the presence of microfilaments and the constricted state of the cellular apices and a relationship between the presence of microtubules and cell elongation.


1980 ◽  
Vol 22 (4) ◽  
pp. 553-567 ◽  
Author(s):  
J. A. Ellenton ◽  
P. K. Basrur

Characterization of the microchromosomes of the red fox, Vulpes vulpes Linn., was attempted through the examination of mitotic chromosomes using Giemsa banding, quinacrine banding, the silver nitrate-ammoniacal silver technique for staining nucleolar organizers, and autoradiographic procedures. Pachytene cells were examined in air-dried and squash meiotic preparations and in testicular tissue sectioned for light and electron microscopy. The results of banding procedures on mitotic chromosomes and the staining properties of the microchromosomes at pachytene indicated that the microchromosomes likely contain both heterochromatin and euchromatin. Autoradiographic analysis showed that the microchromosomes replicate during mid S phase while the Y chromosome, which is in the size range of the microchromosomes, replicates during late S phase. From these observations, it would appear that the microchromosomes may not be exclusively heterochromatic as hypothesized previously. With the use of the silver nitrate-ammoniacal silver technique, the presence of nucleolar regions were detected on specific macrochromosomes but not on any of the microchromosomes. Examination of pachytene chromosomes in air-dried and squash preparations, and of testicular tissue sectioned for light and electron microscopy, also indicated that the microchromosomes may not be involved in the organization of the nucleolus in the red fox.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Joshua Kyle Duncan ◽  
Bryan Anderson ◽  
Jason A. Kaufman ◽  
Andrew Iwaniuk ◽  
T. Bucky Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document