scholarly journals Analysis of protein dynamics within the septate junction reveals a highly stable core protein complex that does not include the basolateral polarity protein Discs large

2011 ◽  
Vol 124 (16) ◽  
pp. 2861-2871 ◽  
Author(s):  
K. Oshima ◽  
R. G. Fehon
2005 ◽  
Vol 38 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Simone Vesentini ◽  
Alberto Redaelli ◽  
Franco M. Montevecchi

2001 ◽  
Vol 114 (12) ◽  
pp. 2265-2277 ◽  
Author(s):  
Laura McMahon ◽  
Renaud Legouis ◽  
Jean-Luc Vonesch ◽  
Michel Labouesse

Specialised subapical junctions play a critical role in maintaining epithelial cell polarity and tissue integrity, and provide a platform for intracellular signalling. Here we analyse the roles of C. elegans genes let-413 and dlg-1, a homologue of Drosophila lethal discs large, in the assembly of the C. elegans apical junction (CeAJ), and provide the first characterisation of this structure. We have identified dlg-1 as an essential gene in an RNA interference screen against C. elegans homologues of genes encoding proteins involved in tight or septate junction formation. We show that DLG-1 colocalises with the junctional protein JAM-1 at CeAJs in a unit distinct from HMP-1/α-catenin, and apical to the laterally localised LET-413. Loss of dlg-1 activity leads to JAM-1 mislocalisation and the disappearance of the electron-dense component of the CeAJs, but only mild adhesion and polarity defects. In contrast, loss of let-413 activity leads to the formation of basally extended discontinuous CeAJs and strong adhesion and polarity defects. Interestingly, in LET-413-deficient embryos, CeAJ markers are localised along the lateral membrane in a manner resembling that observed in wild-type embryos at the onset of epithelial differentiation. We conclude that the primary function of LET-413 is to correctly position CeAJ components at a discrete subapical position. Furthermore, we propose that DLG-1 is required to aggregate JAM-1 and other proteins forming the electron-dense CeAJ structure. Our data suggest that epithelial adhesion is maintained by several redundant systems in C. elegans.


2017 ◽  
Vol 474 (21) ◽  
pp. 3689-3704 ◽  
Author(s):  
Caroline Rajiv ◽  
S. RaElle Jackson ◽  
Simon Cocklin ◽  
Elan Z. Eisenmesser ◽  
Tara L. Davis

Pre-mRNA splicing is a dynamic, multistep process that is catalyzed by the RNA (ribonucleic acid)–protein complex called the spliceosome. The spliceosome contains a core set of RNAs and proteins that are conserved in all organisms that perform splicing. In higher organisms, peptidyl-prolyl isomerase H (PPIH) directly interacts with the core protein pre-mRNA processing factor 4 (PRPF4) and both integrate into the pre-catalytic spliceosome as part of the tri-snRNP (small nuclear RNA–protein complex) subcomplex. As a first step to understand the protein interactions that dictate PPIH and PRPF4 function, we expressed and purified soluble forms of each protein and formed a complex between them. We found two sites of interaction between PPIH and the N-terminus of PRPF4, an unexpected result. The N-terminus of PRPF4 is an intrinsically disordered region and does not adopt secondary structure in the presence of PPIH. In the absence of an atomic resolution structure, we used mutational analysis to identify point mutations that uncouple these two binding sites and find that mutations in both sites are necessary to break up the complex. A discussion of how this bipartite interaction between PPIH and PRPF4 may modulate spliceosomal function is included.


2018 ◽  
Author(s):  
Zhimin Wang ◽  
Floris Bosveld ◽  
Yohanns Bellaïche

AbstractIn epithelial tissue, new cell-cell junctions are formed upon cytokinesis. To understand junction formation during cytokinesis, we explored in Drosophila epithelium, de novo formation of tricellular septate junctions (TCJs). We found that upon midbody formation, the membranes of the two daughter cells and of the neighbouring cells located below the adherens junction (AJ) remain entangled in a 4-cell structure apposed to the midbody. The septate junction protein Discs-Large and components of the TCJ, Gliotactin and Anakonda accumulate in this 4-cell structure. Subsequently, a basal movement of the midbody parallels the detachment of the neighbouring cell membranes from the midbody, the disengagement of the daughter cells from their neighbours and the reorganisation of TCJs between the two daughter cells and their neighbouring cells. While the movement of midbody is independent of the Alix and Shrub abscission regulators, the loss of Gliotactin or Anakonda function impedes both the resolution of the connection between the daughter-neighbour cells and midbody movement. TCJ proteins therefore control an additional step of cytokinesis necessary for the disentanglement of the daughter cells and their neighbours during cytokinesis.


Sign in / Sign up

Export Citation Format

Share Document