discs large
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 28)

H-INDEX

49
(FIVE YEARS 4)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009856
Author(s):  
Amalia Riga ◽  
Janine Cravo ◽  
Ruben Schmidt ◽  
Helena R. Pires ◽  
Victoria G. Castiglioni ◽  
...  

The conserved adapter protein Scribble (Scrib) plays essential roles in a variety of cellular processes, including polarity establishment, proliferation, and directed cell migration. While the mechanisms through which Scrib promotes epithelial polarity are beginning to be unraveled, its roles in other cellular processes including cell migration remain enigmatic. In C. elegans, the Scrib ortholog LET-413 is essential for apical–basal polarization and junction formation in embryonic epithelia. However, whether LET-413 is required for postembryonic development or plays a role in migratory events is not known. Here, we use inducible protein degradation to investigate the functioning of LET-413 in larval epithelia. We find that LET-413 is essential in the epidermal epithelium for growth, viability, and junction maintenance. In addition, we identify a novel role for LET-413 in the polarized outgrowth of the epidermal seam cells. These stem cell-like epithelial cells extend anterior and posterior directed apical protrusions in each larval stage to reconnect to their neighbors. We show that the role of LET-413 in seam cell outgrowth is likely mediated largely by the junctional component DLG-1 discs large, which we demonstrate is also essential for directed outgrowth of the seam cells. Our data uncover multiple essential functions for LET-413 in larval development and show that the polarized outgrowth of the epithelial seam cells is controlled by LET-413 Scribble and DLG-1 Discs large.


Author(s):  
Christina Lehmann ◽  
Christian Pohl

Selfish genetic elements that act as post-segregation distorters cause lethality in non-carrier individuals after fertilization. Two post-segregation distorters have been previously identified in Caenorhabditis elegans, the peel-1/zeel-1 and the sup-35/pha-1 elements. These elements seem to act as modification-rescue systems, also called toxin/antidote pairs. Here we show that the maternal-effect toxin/zygotic antidote pair sup-35/pha-1 is required for proper expression of apical junction (AJ) components in epithelia and that sup-35 toxicity increases when pathways that establish and maintain basal epithelial characteristics, die-1, elt-1, lin-26, and vab-10, are compromised. We demonstrate that pha-1(e2123) embryos, which lack the antidote, are defective in epidermal morphogenesis and frequently fail to elongate. Moreover, seam cells are frequently misshaped and mispositioned and cell bond tension is reduced in pha-1(e2123) embryos, suggesting altered tissue material properties in the epidermis. Several aspects of this phenotype can also be induced in wild-type embryos by exerting mechanical stress through uniaxial loading. Seam cell shape, tissue mechanics, and elongation can be restored in pha-1(e2123) embryos if expression of the AJ molecule DLG-1/Discs large is reduced. Thus, our experiments suggest that maternal-effect toxicity disrupts proper development of the epidermis which involves distinct transcriptional regulators and AJ components.


Biology Open ◽  
2021 ◽  
Author(s):  
Emily A. Schiller ◽  
Dan T. Bergstralh

The orientation of the mitotic spindle determines the direction of cell division, and therefore contributes to tissue shape and cell fate. Interaction between the multifunctional scaffolding protein Discs large (Dlg) and the canonical spindle orienting factor GPSM2 (called Pins in Drosophila and LGN in vertebrates) has been established in bilaterian models, but its function remains unclear. We used a phylogenetic approach to test whether the interaction is obligate in animals, and in particular whether Pins/LGN/GPSM2 evolved in multicellular organisms as a Dlg-binding protein. We show that Dlg diverged in C. elegans and the syncytial sponge O. minuta and propose that this divergence may correspond to differences in spindle orientation requirements between these organisms and the canonical pathways described in bilaterians. We also demonstrate that Pins/LGN/GPSM2 is present in basal animals, but the established Dlg-interaction site cannot be found in either Placozoa or Porifera. Our results suggest that the interaction between Pins/LGN/GPSM2 and Dlg appeared in Cnidaria, and we therefore speculate that it may have evolved to promote accurate division orientation in the nervous system. This work reveals the evolutionary history of the Pins/LGN/GPSM2-Dlg interaction and suggests new possibilities for its importance in spindle orientation during epithelial and neural tissue development.


Author(s):  
Zhixin Peng ◽  
Xiaoheng Li ◽  
Jun Li ◽  
Yuan Dong ◽  
Yuhao Gao ◽  
...  

AbstractMicroglia-mediated neuroinflammation is widely perceived as a contributor to numerous neurological diseases and mental disorders including depression. Discs large homolog 1 (Dlg1), an adaptor protein, regulates cell polarization and the function of K+ channels, which are reported to regulate the activation of microglia. However, little is known about the role of Dlg1 in microglia and the maintenance of central nervous system homeostasis. In this study, we found that Dlg1 knockdown suppressed lipopolysaccharide (LPS)-induced inflammation by down-regulating the activation of nuclear factor-κB signaling and the mitogen-activated protein kinase pathway in microglia. Moreover, using an inducible Dlg1 microglia-specific knockout (Dlg1flox/flox; CX3CR1CreER) mouse line, we found that microglial Dlg1 knockout reduced the activation of microglia and alleviated the LPS-induced depression-like behavior. In summary, our results demonstrated that Dlg1 plays a critical role in microglial activation and thus provides a potential therapeutic target for the clinical treatment of depression.


2021 ◽  
Author(s):  
Emily Schiller ◽  
Dan T Bergstralh

The orientation of the mitotic spindle determines the direction of cell division, and therefore contributes to tissue shape and cell fate. Interaction between the multifunctional scaffolding protein Discs large (Dlg) and the canonical spindle orienting factor GPSM2 (also called Pins in Drosophila and LGN in vertebrates) has been established in bilaterian models, but its function remains unclear. We used a phylogenetic approach to test whether the interaction is obligate in animals, and in particular whether GPSM2 evolved in multicellular organisms as a Dlg-binding protein. We show that Dlg diverged in C. elegans and the syncytial sponge O. minuta and propose that this divergence may correspond to differences in spindle orientation requirements between these organisms and the canonical pathways described in bilaterians. We also demonstrate that GPSM2 is present in basal animals, but the established Dlg-interaction site cannot be found in either Placozoa or Porifera. Our results suggest that the interaction between GPSM2 and Dlg appeared in Cnidaria, and we therefore speculate that it may have evolved to promote accurate division orientation in the nervous system. This work reveals the evolutionary history of the GPSM2/Dlg interaction and suggests new possibilities for its importance in spindle orientation during epithelial and neural tissue development.


2021 ◽  
Author(s):  
Amalia Riga ◽  
Janine Cravo ◽  
Ruben Schmidt ◽  
Helena R. Pires ◽  
Victoria G. Castiglioni ◽  
...  

AbstractThe conserved adapter protein Scribble (Scrib) plays essential roles in a variety of cellular processes, including polarity establishment, proliferation, and directed cell migration. While the mechanisms through which Scrib promotes epithelial polarity are beginning to be unraveled, its roles in other cellular processes including cell migration remain enigmatic. InC. elegans, the Scrib ortholog LET-413 is essential for apical–basal polarization and junction formation in embryonic epithelia. However, whether LET-413 is required for postembryonic development or plays a role in migratory events is not known. Here, we use inducible protein degradation to investigate the functioning of LET-413 in larval epithelia. We find that LET-413 is essential in the epidermal epithelium for growth, viability, and junction maintenance. In addition, we identify a novel role for LET-413 in the polarized outgrowth of the epidermal seam cells. These stem cell-like epithelial cells extend anterior and posterior directed apical protrusions in each larval stage to reconnect to their neighbors. We show that the role of LET-413 in seam cell outgrowth is mediated at least in part by the junctional component DLG-1 discs large, which appears to restrict protrusive activity to the apical domain. Finally, we demonstrate that the Rho-family GTPases CED-10 Rac and CDC-42 can regulate seam cell outgrowth and may also function downstream of LET-413. Our data uncover multiple essential functions for LET-413 in larval development and shed new light on the regulation of polarized outgrowth of the seam cells.


Development ◽  
2021 ◽  
pp. dev.196956
Author(s):  
Juan Lu ◽  
Wei Dong ◽  
Yan Tao ◽  
Yang Hong

Discs large (Dlg) is an essential polarity protein and a tumor suppressor originally characterized in Drosophila but is also well conserved in vertebrates. Like the majority of polarity proteins, plasma membrane (PM)/cortical localization of Dlg is required for its function in polarity and tumorigenesis, but the exact mechanisms targeting Dlg to PM remain to be fully elucidated. Here we show that, similar to the recently discovered polybasic polarity proteins such as Lgl and aPKC, Dlg also contains a positively charged polybasic domain that electrostatically binds the PM phosphoinositides PI4P and PI(4,5)P2. Electrostatic targeting by the polybasic domain contributes significantly to the PM localization of Dlg in follicular and early embryonic epithelial cells, and is crucial for Dlg to regulate both polarity and tumorigenesis. The electrostatic PM targeting of Dlg is controlled by a potential phosphorylation-dependent allosteric regulation of its polybasic domain, and is specifically enhanced by the interactions between Dlg and another basolateral polarity protein and tumor suppressor Scrib. Our studies highlight an increasingly significant role of electrostatic PM targeting of polarity proteins in regulating cell polarity.


2020 ◽  
Author(s):  
Juan Lu ◽  
Wei Dong ◽  
Yan Tao ◽  
Yang Hong

SUMMARYDiscs large (Dlg) is an essential polarity protein and a tumor suppressor originally characterized in Drosophila but is also well conserved in vertebrates. Like the majority of polarity proteins, plasma membrane (PM)/cortical localization of Dlg is required for its function in regulating apical-basal polarity and tumorigenesis, but the exact mechanisms targeting Dlg to PM remain to be unclear. Here we show that, similar to recently discovered polybasic polarity proteins such as Lgl and aPKC, Dlg also contains a positively charged polybasic domain that electrostatically binds the PM phosphoinositides PI4P and PI(4,5)P2. Electrostatic targeting by the polybasic domain acts as the primary mechanism localizing Dlg to the PM in follicular and early embryonic epithelial cells, and is crucial for Dlg to regulate both polarity and tumorigenesis. The electrostatic PM targeting of Dlg is controlled by a potential phosphorylation-dependent allosteric regulation of its polybasic domain, and is specifically enhanced by interactions between Dlg and another basolateral polarity protein and tumor suppressor Scrib. Our studies highlight an increasingly significant role of electrostatic PM targeting of polarity proteins in regulating cell polarity.


Biology Open ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. bio049692
Author(s):  
Anthony Agudelo ◽  
Victoria St. Amand ◽  
Lindsey Grissom ◽  
Danielle Lafond ◽  
Toni Achilli ◽  
...  

ABSTRACTMutations in superoxide dismutase 1 (SOD1) cause familial amyotrophic lateral sclerosis (ALS) in humans. ALS is a neurodegenerative disease characterized by progressive motor neuron loss leading to paralysis and inevitable death in affected individuals. Using a gene replacement strategy to introduce disease mutations into the orthologous Drosophila sod1 (dsod1) gene, here, we characterize changes at the neuromuscular junction using longer-lived dsod1 mutant adults. Homozygous dsod1H71Y/H71Y or dsod1null/null flies display progressive walking defects with paralysis of the third metathoracic leg. In dissected legs, we assessed age-dependent changes in a single identified motor neuron (MN-I2) innervating the tibia levitator muscle. At adult eclosion, MN-I2 of dsod1H71Y/H71Y or sod1null/null flies is patterned similar to wild-type flies indicating no readily apparent developmental defects. Over the course of 10 days post-eclosion, MN-I2 shows an overall reduction in arborization with bouton swelling and loss of the post-synaptic marker discs-large (dlg) in mutant dsod1 adults. In addition, increases in polyubiquitinated proteins correlate with the timing and extent of MN-I2 changes. Because similar phenotypes are observed between flies homozygous for either dsod1H71Y or dsod1null alleles, we conclude these NMJ changes are mainly associated with sod loss-of-function. Together these studies characterize age-related morphological and molecular changes associated with axonal retraction in a Drosophila model of ALS that recapitulate an important aspect of the human disease.This article has an associated First Person interview with the first author of the paper.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Jiaxi Xu ◽  
Eric D Lazartigues

Hypertension has now been considered as one of the risk factors of Alzheimer's disease (AD), due to its contribution to the dysfunction of cerebrovascular system. To investigate its neuronal contribution, hypertension was induced in C57BL/6j male mice by either systemic infusion of Ang-II (600 ng/kg/min, s.c., 14 days) or DOCA-salt treatment (1 mg/g, s.c., 21 days), then markers for neuronal function were measured via qRT-PCR. In the hippocampus, Ang-II treatment significantly down-regulated the mRNA levels of BDNF (brain-derived neurotrophic factor) and DLG4 (discs large homolog 4, encoding PSD95), while DOCA-salt treatment only down-regulated BDNF expression (P<0.05 vs. sham, n=6). Notably, the expression of PI4KIIIβ, a key kinase for phosphatidylinositol-4,5-isphosphate (PIP 2 ) re-synthesis, was found to be markedly down-regulated in the hippocampus of both hypertension models (P<0.05 vs. sham, n=6). PI4K activity has been closely associated with the progression of neurodegenerative disorders, especially AD, therefore suggesting that reduction of neuronal function could be a part of the etiology of hypertension-related cognitive decline. We have demonstrated that neuronal AT 1 R plays pivotal role in the maintenance of neurogenic hypertension, and here we hypothesized that activation of AT 1 R could also exacerbate hypertension-induced reduction in neuronal function. In mice with DOCA-salt hypertension, the function of cortical neurons was shown to be improved by selective deletion of neuronal AT 1a R, as evidenced by significantly higher mRNA levels of BDNF and PI4KIIIβ, compared to the controls (P<0.05 vs. sham, n=6). To further study the possible involvement of neuronal AT 1 R in AD, 5хFAD mice were bred with mice with neuronal AT 1 R deletion (AT1NKO). AD-associated reduction of ACE2 protein, mainly in neurons, was found to be slightly ameliorated in the prefrontal cortex of 5хFAD-AT1NKO, compared to the age/sex-matched 5хFAD, showing by immunocytochemistry (24610 ±4182 vs. 13420 ±3720 AFU, n=6 slices). Although the detailed mechanism is still unknown, our data suggest that, neuron-expressing AT 1 R could participate in the development of hypertension-associated cognitive impairment and AD, independently of vascular AT 1 R.


Sign in / Sign up

Export Citation Format

Share Document