Both cdc2 and cdk2 promote S phase initiation in Xenopus egg extracts

1995 ◽  
Vol 108 (5) ◽  
pp. 1831-1841 ◽  
Author(s):  
S. Chevalier ◽  
J.P. Tassan ◽  
R. Cox ◽  
M. Philippe ◽  
C. Ford

Xenopus egg extracts induce S phase DNA replication in added sperm pronuclei in a highly regulated manner, similar to events in vivo. Removal of cyclin-dependant kinases (cdks) or cdk2 from these extracts using affinity matrices severely inhibits initiation of S phase. We have used p13suc1 beads to remove both cdk2 and cdc2 proteins from egg extracts and developed a method to replace either protein alone to assess their capacity to initiate DNA replication. Re-addition of either cdk2 or cdc2 proteins to depleted extracts, through translation of their respective mRNAs, restimulated replication, judged by both total synthesis and labelling index. An ATP-binding-site mutant cdk2 mRNA (cdk2.R33) failed to stimulate replication and inhibited S phase initiation in mock-depleted extracts. Both human and Xenopus cdc2 mRNAs rescued replication in this system. Human mutant mRNAs have been used to show that the stimulation induced requires cdc2 catalytic activity, though not its mitotically active form. Rescue of replication by p34cdc2 is also observed in extracts depleted of cdks with a cdk2 antibody, which still retain much of their endogenous cdc2 protein. We conclude that newly synthesised p34cdc2, but not the inherited ‘old’ form, can induce S phase and in this form may overlap in function with p33cdk2.

2003 ◽  
Vol 161 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Feng Li ◽  
Jianhua Chen ◽  
Eduardo Solessio ◽  
David M. Gilbert

We have examined the distribution of early replicating origins on stretched DNA fibers when nuclei from CHO cells synchronized at different times during G1 phase initiate DNA replication in Xenopus egg extracts. Origins were differentially labeled in vivo versus in vitro to allow a comparison of their relative positions and spacing. With nuclei isolated in the first hour of G1 phase, in vitro origins were distributed throughout a larger number of DNA fibers and did not coincide with in vivo origins. With nuclei isolated 1 h later, a similar total number of in vitro origins were clustered within a smaller number of DNA fibers but still did not coincide with in vivo origins. However, with nuclei isolated later in G1 phase, the positions of many in vitro origins coincided with in vivo origin sites without further change in origin number or density. These results highlight two distinct G1 steps that establish a spatial and temporal program for replication.


2003 ◽  
Vol 100 (23) ◽  
pp. 13241-13246 ◽  
Author(s):  
T. A. Prokhorova ◽  
K. Mowrer ◽  
C. H. Gilbert ◽  
J. C. Walter

1991 ◽  
Vol 98 (3) ◽  
pp. 271-279
Author(s):  
J. Meier ◽  
K.H. Campbell ◽  
C.C. Ford ◽  
R. Stick ◽  
C.J. Hutchison

Xenopus egg extracts, which support nuclear assembly and DNA replication, were functionally depleted of lamin LIII by inoculating them with monoclonal anti-lamin antibodies. Phase-contrast microscopy and electron-microscopy studies indicated that lamin-depleted extracts supported efficient chromatin decondensation, and assembly of double membrane structures and nuclear pores on demembranated sperm heads. Immunofluorescence microscopy suggests that lamin-antibody complexes are transported across the nuclear membrane but do not assemble into a lamina. These findings were confirmed by immunoblotting analysis of isolated nuclei. Metabolic labelling studies with either biotin-11-dUTP or [32P]dCTP, revealed that nuclei lacking a lamina were unable to initiate DNA replication and that, although such nuclei could import proteins required for DNA replication (e.g. PCNA), these proteins were apparently not organized into replicon clusters.


2004 ◽  
Vol 165 (6) ◽  
pp. 801-812 ◽  
Author(s):  
Wenhui Li ◽  
Soo-Mi Kim ◽  
Joon Lee ◽  
William G. Dunphy

Bloom's syndrome (BS), a disorder associated with genomic instability and cancer predisposition, results from defects in the Bloom's helicase (BLM) protein. In BS cells, chromosomal abnormalities such as sister chromatid exchanges occur at highly elevated rates. Using Xenopus egg extracts, we have studied Xenopus BLM (Xblm) during both unperturbed and disrupted DNA replication cycles. Xblm binds to replicating chromatin and becomes highly phosphorylated in the presence of DNA replication blocks. This phosphorylation depends on Xenopus ATR (Xatr) and Xenopus Rad17 (Xrad17), but not Claspin. Xblm and Xenopus topoisomerase IIIα (Xtop3α) interact in a regulated manner and associate with replicating chromatin interdependently. Immunodepletion of Xblm from egg extracts results in accumulation of chromosomal DNA breaks during both normal and perturbed DNA replication cycles. Disruption of the interaction between Xblm and Xtop3α has similar effects. The occurrence of DNA damage in the absence of Xblm, even without any exogenous insult to the DNA, may help to explain the genesis of chromosomal defects in BS cells.


1993 ◽  
Vol 123 (6) ◽  
pp. 1321-1331 ◽  
Author(s):  
Y Kubota ◽  
H Takisawa

Xenopus egg extracts prepared before and after egg activation retain M- and S-phase specific activity, respectively. Staurosporine, a potent inhibitor of protein kinase, converted M-phase extracts into interphase-like extracts that were capable of forming nuclei upon the addition of sperm DNA. The nuclei formed in the staurosporine treated M-phase extract were incapable of replicating DNA, and they were unable to initiate replication upon the addition of S-phase extracts. Furthermore, replication was inhibited when the staurosporine-treated M-phase extract was added in excess to the staurosporine-treated S-phase extract before the addition of DNA. The membrane-depleted S-phase extract supported neither nuclear formation nor replication; however, preincubation of sperm DNA with these extracts allowed them to form replication-competent nuclei upon the addition of excess staurosporine-treated M-phase extract. These results demonstrate that positive factors in the S-phase extracts determined the initiation of DNA replication before nuclear formation, although these factors were unable to initiate replication after nuclear formation.


2013 ◽  
Vol 41 (16) ◽  
pp. 7725-7737 ◽  
Author(s):  
Elaine M. Taylor ◽  
Nicola M. Bonsu ◽  
R. Jordan Price ◽  
Howard D. Lindsay

Sign in / Sign up

Export Citation Format

Share Document