Chromatin-bound Cdc6 persists in S and G2 phases in human cells, while soluble Cdc6 is destroyed in a cyclin A-cdk2 dependent process

2000 ◽  
Vol 113 (11) ◽  
pp. 1929-1938 ◽  
Author(s):  
D. Coverley ◽  
C. Pelizon ◽  
S. Trewick ◽  
R.A. Laskey

Cdc6 is essential for the initiation of DNA replication in all organisms in which it has been studied. In addition, recombinant Cdc6 can stimulate initiation in G(1) nuclei in vitro. We have analysed the behaviour of recombinant Cdc6 in mammalian cell extracts under in vitro replication conditions. We find that Cdc6 is imported into the nucleus in G(1)phase, where it binds to chromatin and remains relatively stable. In S phase, exogenous Cdc6 is destroyed in a process that requires import into the nucleus and phosphorylation by a chromatin-bound protein kinase. Recombinant cyclin A-cdk2 can completely substitute for the nucleus in promoting destruction of soluble Xenopus and human Cdc6. Despite this regulated destruction, endogenous Cdc6 persists in the nucleus after initiation, although the amount falls. Cdc6 levels remain constant in G(2) then fall again before mitosis. We propose that cyclin A-cdk2 phosphorylation results in destruction of any Cdc6 not assembled into replication complexes, but that assembled proteins remain, in the phosphorylated state, in the nucleus. This process could contribute to the prevention of reinitiation in human cells by making free Cdc6 unavailable for re-assembly into replication complexes after G(1) phase.

1996 ◽  
Vol 271 (49) ◽  
pp. 31627-31637 ◽  
Author(s):  
Arun Fotedar ◽  
Dominique Cannella ◽  
Patrick Fitzgerald ◽  
Tristan Rousselle ◽  
Sunita Gupta ◽  
...  

1999 ◽  
Vol 73 (4) ◽  
pp. 3004-3013 ◽  
Author(s):  
Inga Reynisdóttir ◽  
Subarna Bhattacharyya ◽  
Dong Zhang ◽  
Carol Prives

ABSTRACT The retinoblastoma tumor suppressor protein (pRb) can associate with the transforming proteins of several DNA tumor viruses, including the large T antigen encoded by polyomavirus (Py T Ag). Although pRb function is critical for regulating progression from G1 to S phase, a role for pRb in S phase has not been demonstrated or excluded. To identify a potential effect of pRb on DNA replication, pRb protein was added to reaction mixtures containing Py T Ag, Py origin-containing DNA (Py ori-DNA), and murine FM3A cell extracts. We found that pRb strongly represses Py ori-DNA replication in vitro. Unexpectedly, however, this inhibition only partially depends on the interaction of pRb with Py T Ag, since a mutant Py T Ag (dl141) lacking the pRb interaction region was also significantly inhibited by pRb. This result suggests that pRb interferes with or alters one or more components of the murine cell replication extract. Furthermore, the ability of Py T Ag to be phosphorylated in such extracts is markedly reduced in the presence of pRb. Since cyclin-dependent kinase (CDK) phosphorylation of Py T Ag is required for its replication function, we hypothesize that pRb interferes with this phosphorylation event. Indeed, the S-phase CDK complex (cyclin A-CDK2), which phosphorylates both pRb and Py T Ag, alleviates inhibition caused by pRb. Moreover, hyperphosphorylated pRb is incapable of inhibiting replication of Py ori-DNA in vitro. We propose a new requirement for maintaining pRb phosphorylation in S phase, namely, to prevent deleterious effects on the cellular replication machinery.


2011 ◽  
Vol 193 (6) ◽  
pp. 995-1007 ◽  
Author(s):  
Akiko Kumagai ◽  
Anna Shevchenko ◽  
Andrej Shevchenko ◽  
William G. Dunphy

Treslin, a TopBP1-interacting protein, is necessary for deoxyribonucleic acid (DNA) replication in vertebrates. Association between Treslin and TopBP1 requires cyclin-dependent kinase (Cdk) activity in Xenopus laevis egg extracts. We investigated the mechanism and functional importance of Cdk for this interaction using both X. laevis egg extracts and human cells. We found that Treslin also associated with TopBP1 in a Cdk-regulated manner in human cells and that Treslin was phosphorylated within a conserved Cdk consensus target sequence (on S976 in X. laevis and S1000 in humans). Recombinant human Cdk2–cyclin E also phosphorylated this residue of Treslin in vitro very effectively. Moreover, a mutant of Treslin that cannot undergo phosphorylation on this site showed significantly diminished binding to TopBP1. Finally, human cells harboring this mutant were severely deficient in DNA replication. Collectively, these results indicate that Cdk-mediated phosphorylation of Treslin during S phase is necessary for both its effective association with TopBP1 and its ability to promote DNA replication in human cells.


1999 ◽  
Vol 112 (14) ◽  
pp. 2381-2390
Author(s):  
M. Sanchez ◽  
A. Calzada ◽  
A. Bueno

The cdc18(+) gene of the fission yeast Schizosaccharomyces pombe is involved in the initiation of DNA replication as well as in coupling the S phase to mitosis. In this work, we show that the Saccharomyces cerevisiae CDC6 gene complements cdc18-K46 ts and cdc18 deletion mutant S. pombe strains. The budding yeast gene suppresses both the initiation and the checkpoint defects associated with the lack of cdc18(+). The Cdc6 protein interacts in vivo with Cdc2 kinase complexes. Interestingly, Cdc6 is an in vitro substrate for Cdc13/Cdc2 and Cig1/Cdc2, but not for Cig2/Cdc2-associated kinases. Overexpression of Cdc6 in fission yeast induces multiple rounds of S-phase in the absence of mitosis and cell division. This CDC6-dependent continuous DNA synthesis phenotype is independent of the presence of a functional cdc18(+) gene product and, significantly, requires only Cig2/Cdc2-associated kinase activity. Finally, these S. pombe over-replicating cells do not require any protein synthesis other than that of Cdc6. Our data strongly suggest that CDC6 and cdc18(+) are functional homologues and also support the idea that controls restricting genome duplication diverge in fission and budding yeast.


2002 ◽  
Vol 22 (13) ◽  
pp. 4477-4490 ◽  
Author(s):  
Amy D. Fung ◽  
Jiongwen Ou ◽  
Stephanie Bueler ◽  
Grant W. Brown

ABSTRACT The fission yeast Dbf4 homologue Dfp1 has a well-characterized role in regulating the initiation of DNA replication. Sequence analysis of Dfp1 homologues reveals three highly conserved regions, referred to as motifs N, M, and C. To determine the roles of these conserved regions in Dfp1 function, we have generated dfp1 alleles with mutations in these regions. Mutations in motif N render cells sensitive to a broad range of DNA-damaging agents and replication inhibitors, yet these mutant proteins are efficient activators of Hsk1 kinase in vitro. In contrast, mutations in motif C confer sensitivity to the alkylating agent methyl methanesulfonate (MMS) but, surprisingly, not to UV, ionizing radiation, or hydroxyurea. Motif C mutants are poor activators of Hsk1 in vitro but can fulfill the essential function(s) of Dfp1 in vivo. Strains carrying dfp1 motif C mutants have an intact mitotic and intra-S-phase checkpoint, and epistasis analysis indicates that dfp1 motif C mutants function outside of the known MMS damage repair pathways, suggesting that the observed MMS sensitivity is due to defects in recovery from DNA damage. The motif C mutants are most sensitive to MMS during S phase and are partially suppressed by deletion of the S-phase checkpoint kinase cds1. Following treatment with MMS, dfp1 motif C mutants exhibit nuclear fragmentation, chromosome instability, precocious recombination, and persistent checkpoint activation. We propose that Dfp1 plays at least two genetically separable roles in the DNA damage response in addition to its well-characterized role in the initiation of DNA replication and that motif C plays a critical role in the response to alkylation damage, perhaps by restarting or stabilizing stalled replication forks.


2000 ◽  
Vol 11 (12) ◽  
pp. 4117-4130 ◽  
Author(s):  
Utz Herbig ◽  
Jason W. Griffith ◽  
Ellen Fanning

Cyclin-dependent kinases (Cdk) are essential for promoting the initiation of DNA replication, presumably by phosphorylating key regulatory proteins that are involved in triggering the G1/S transition. Human Cdc6 (HsCdc6), a protein required for initiation of DNA replication, is phosphorylated by Cdk in vitro and in vivo. Here we report that HsCdc6 with mutations at potential Cdk phosphorylation sites was poorly phosphorylated in vitro by Cdk, but retained all other biochemical activities of the wild-type protein tested. Microinjection of mutant HsCdc6 proteins into human cells blocked initiation of DNA replication or slowed S phase progression. The inhibitory effect of mutant HsCdc6 was lost at the G1/S transition, indicating that phosphorylation of HsCdc6 by Cdk is critical for a late step in initiation of DNA replication in human cells.


2005 ◽  
Vol 79 (13) ◽  
pp. 8661-8664 ◽  
Author(s):  
Stephen Schuck ◽  
Arne Stenlund

ABSTRACT Viral initiator proteins are polypeptides that form oligomeric complexes on the origin of DNA replication (ori). These complexes carry out a multitude of functions related to initiation of DNA replication, and although many of these functions have been characterized biochemically, little is understood about how the complexes are assembled. Here we demonstrate that loss of one particular interaction, the dimerization between E1 DNA binding domains, has a severe effect on DNA replication in vivo but has surprisingly modest effects on most individual biochemical activities in vitro. We conclude that the dimer interaction is primarily required for initial recognition of ori.


Sign in / Sign up

Export Citation Format

Share Document