The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1

2000 ◽  
Vol 113 (18) ◽  
pp. 3267-3275 ◽  
Author(s):  
A. Johansson ◽  
M. Driessens ◽  
P. Aspenstrom

A mammalian homologue of the PDZ domain containing Caenorhabditis elegans protein PAR-6 was found in a yeast two-hybrid system screen as binding to the Rho family member Cdc42. PAR-6 contains a PDZ domain and in C. elegans it has been shown to be crucial for the asymmetric cleavage and establishment of cell polarity during the first cell divisions in the growing embryo. Mammalian PAR-6 interacted with Cdc42 and Rac1 both in the yeast two-hybrid system and in in vitro binding assays. Co-immunoprecipitation experiments, employing transiently transfected Cos-1 cells, further confirmed that Cdc42 and Rac1 are physiological binding partners for PAR-6. We found that, in epithelial Madin-Darby canine kidney cells (MDCK), endogenous PAR-6 was present in the tight junctions, as judged from its co-localisation with the tight junction protein ZO-1, however, PAR-6 was also detected in the cell nucleus. Stimulation of MDCK cells with scatter factor/hepatocyte growth factor induced a loss of PAR-6 from the areas of cell-cell contacts in conformity with their progressive breakdown. In C. elegans PAR-6 co-localises with PAR-3 and has been suggested to form a direct complex. In agreement with earlier studies, mammalian PAR-3 was found to be present in tight junctions of MDCK cells but, in contrast to PAR-6, the protein could not be detected in the nucleus. Furthermore, co-immunoprecipitation experiments, employing Cos-1 cells, demonstrated that mammalian PAR-6 and PAR-3 formed a direct complex. These findings, together with the reported roles of PAR-6 and PAR-3 in C. elegans, suggest that Cdc42 and Rac1 and PAR-6/PAR-3 are involved in the establishment of cell polarity in epithelial cells.

2013 ◽  
Vol 38 (9) ◽  
pp. 1583-1591
Author(s):  
Li-Yan XUE ◽  
Bing LUO ◽  
Li-Quan ZHU ◽  
Yong-Jun YANG ◽  
He-Cui ZHANG ◽  
...  

2012 ◽  
Vol 39 (8) ◽  
pp. 8225-8230 ◽  
Author(s):  
Xiaolan Li ◽  
Xuelai Luo ◽  
Zhaoming Li ◽  
Guihua Wang ◽  
Hui Xiao ◽  
...  

Genomics ◽  
2001 ◽  
Vol 76 (1-3) ◽  
pp. 81-88 ◽  
Author(s):  
Sarah H.D Wilson ◽  
Angela M Bailey ◽  
Craig R Nourse ◽  
Marie-Geneviève Mattei ◽  
Jennifer A Byrne

1994 ◽  
Vol 91 (20) ◽  
pp. 9238-9242 ◽  
Author(s):  
T. Sato ◽  
M. Hanada ◽  
S. Bodrug ◽  
S. Irie ◽  
N. Iwama ◽  
...  

Genetics ◽  
1996 ◽  
Vol 144 (3) ◽  
pp. 1087-1095 ◽  
Author(s):  
Allan R Lohe ◽  
David T Sullivan ◽  
Daniel L Hartl

Abstract We have studied the Mos1 transposase encoded by the transposable element mariner. This transposase is a member of the “D,D(35)E” superfamily of proteins exhibiting the motif D,D(34)D. It is not known whether this transposase, or other eukaryote transposases manifesting the D,D(35)E domain, functions in a multimeric form. Evidence for oligomerization was found in the negative complementation of Mos1 by an EMS-induced transposase mutation in the catalytic domain. The transposase produced by this mutation has a glycine-to-arginine replacement at position 292. The G292R mutation strongly interferes with the ability of wild-type transposase to catalyze excision of a target element. Negative complementation was also observed for two other EMS mutations, although the effect was weaker than observed with G292R. Results from the yeast two-hybrid system also imply that Mos1 subunits interact, suggesting the possibility of subunit oligomerization in the transposition reaction. Overproduction of Mos1 subunits through an hsp70 promoter also inhibits excision of the target element, possibly through autoregulatory feedback on transcription or through formation of inactive or less active oligomers. The effects of both negative complementation and overproduction may contribute to the regulation of mariner transposition.


1994 ◽  
Vol 14 (11) ◽  
pp. 7483-7491
Author(s):  
A Kikuchi ◽  
S D Demo ◽  
Z H Ye ◽  
Y W Chen ◽  
L T Williams

Using a yeast two-hybrid system, we identified a novel protein which interacts with ras p21. This protein shares 69% amino acid homology with ral guanine nucleotide dissociation stimulator (ralGDS), a GDP/GTP exchange protein for ral p24. We designated this protein RGL, for ralGDS-like. Using the yeast two-hybrid system, we found that an effector loop mutant of ras p21 was defective in interacting with the ras p21-interacting domain of RGL, suggesting that this domain binds to ras p21 through the effector loop of ras p21. Since ralGDS contained a region highly homologous with the ras p21-interacting domain of RGL, we examined whether ralGDS could interact with ras p21. In the yeast two-hybrid system, ralGDS failed to interact with an effector loop mutant of ras p21. In insect cells, ralGDS made a complex with v-ras p21 but not with a dominant negative mutant of ras p21. ralGDS interacted with the GTP-bound form of ras p21 but not with the GDP-bound form in vitro. ralGDS inhibited both the GTPase-activating activity of the neurofibromatosis gene product (NF1) for ras p21 and the interaction of Raf with ras p21 in vitro. These results demonstrate that ralGDS specifically interacts with the active form of ras p21 and that ralGDS can compete with NF1 and Raf for binding to the effector loop of ras p21. Therefore, ralGDS family members may be effector proteins of ras p21 or may inhibit interactions between ras p21 and its effectors.


2018 ◽  
Vol 51 (8) ◽  
pp. 876-876
Author(s):  
Yanshen Li ◽  
Zhenhua Yu ◽  
Yong Cui ◽  
Hui Sun ◽  
Jin Li ◽  
...  

2012 ◽  
Vol 418 (4) ◽  
pp. 628-633 ◽  
Author(s):  
Li Ma ◽  
Souichi Koyota ◽  
Yu Myoen ◽  
Tetsuro Yamashita ◽  
Naoki Yatabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document