scholarly journals Sarcomere length measurement permits high resolution normalization of muscle fiber length in architectural studies

2005 ◽  
Vol 208 (17) ◽  
pp. 3275-3279 ◽  
Author(s):  
A. Felder
Author(s):  
Joachim R. Sommer ◽  
Teresa High ◽  
Betty Scherer ◽  
Isaiah Taylor ◽  
Rashid Nassar

We have developed a model that allows the quick-freezing at known time intervals following electrical field stimulation of a single, intact frog skeletal muscle fiber isolated by sharp dissection. The preparation is used for studying high resolution morphology by freeze-substitution and freeze-fracture and for electron probe x-ray microanlysis of sudden calcium displacement from intracellular stores in freeze-dried cryosections, all in the same fiber. We now show the feasibility and instrumentation of new methodology for stimulating a single, intact skeletal muscle fiber at a point resulting in the propagation of an action potential, followed by quick-freezing with sub-millisecond temporal resolution after electrical stimulation, followed by multiple sampling of the frozen muscle fiber for freeze-substitution, freeze-fracture (not shown) and cryosectionmg. This model, at once serving as its own control and obviating consideration of variances between different fibers, frogs etc., is useful to investigate structural and topochemical alterations occurring in the wake of an action potential.


2006 ◽  
Vol 290 (4) ◽  
pp. C981-C989 ◽  
Author(s):  
X. D. Wang ◽  
F. Kawano ◽  
Y. Matsuoka ◽  
K. Fukunaga ◽  
M. Terada ◽  
...  

The effects of mechanical unloading and reloading on the properties of rat soleus muscle fibers were investigated in male Wistar Hannover rats. Satellite cells in the fibers of control rats were distributed evenly throughout the fiber length. After 16 days of hindlimb unloading, the number of satellite cells in the central, but not the proximal or distal, region of the fiber was decreased. The number of satellite cells in the central region gradually increased during the 16-day period of reloading. The mean sarcomere length in the central region of the fibers was passively shortened during unloading due to the plantarflexed position at the ankle joint: sarcomere length was maintained at <2.1 μm, which is a critical length for tension development. Myonuclear number and domain size, fiber cross-sectional area, and the total number of mitotically active and quiescent satellite cells of whole muscle fibers were lower than control fibers after 16 days of unloading. These values then returned to control values after 16 days of reloading. These results suggest that satellite cells play an important role in the regulation of muscle fiber properties. The data also indicate that the satellite cell-related regulation of muscle fiber properties is dependent on the level of mechanical loading, which, in turn, is influenced by the mean sarcomere length. However, it is still unclear why the region-specific responses, which were obvious in satellite cells, were not induced in myonuclear number and fiber cross-sectional area.


2017 ◽  
Vol 112 (4) ◽  
pp. 805-812 ◽  
Author(s):  
Kevin W. Young ◽  
Bill P.-P. Kuo ◽  
Shawn M. O’Connor ◽  
Stojan Radic ◽  
Richard L. Lieber

1991 ◽  
Vol 261 (5) ◽  
pp. H1617-H1625 ◽  
Author(s):  
O. Mathieu-Costello ◽  
C. G. Ellis ◽  
R. F. Potter ◽  
I. C. MacDonald ◽  
A. C. Groom

It is known that a substantial amount of capillary tortuosity is found in shortened muscles. However, the increased capillary length and surface area contributed by tortuosity and branching are seldom taken into account when capillarity is estimated and/or blood-tissue exchange is modeled in muscles. In this paper, we sought morphometric estimates of capillarity in transverse sections that incorporated data on capillary geometry. We derived equations to estimate capillary perimeter per fiber perimeter (i.e., capillary-to-fiber perimeter ratio) in transverse sections. We show how capillary-to-fiber perimeter ratio is related to capillary surface per fiber surface, i.e., to the amount of capillary surface available for exchange per muscle fiber surface area, and how it can be obtained by morphometry. Because capillary tortuosity and fiber perimeter are both a function of sarcomere length, the degree of extension or shortening of muscle samples obviously needs to be taken into account when capillary-to-fiber perimeter ratio is compared between muscles and/or samples. Using data currently available on capillary length and diameter with fiber shortening and extension, we show that it is a feature of capillary-to-fiber perimeter ratio to change relatively little with sarcomere length. As sarcomere length decreases from 2.80 to 1.58 microns in perfusion-fixed hindlimb muscles of rats, capillary and fiber perimeters in transverse sections increase substantially, whereas the ratio between the two variables, capillary-to-fiber perimeter ratio, changes only less than or equal to 10-15%.(ABSTRACT TRUNCATED AT 250 WORDS)


2004 ◽  
Vol 97 (5) ◽  
pp. 1803-1813 ◽  
Author(s):  
Tina J. Patel ◽  
Ronnie Das ◽  
Jan Fridén ◽  
Gordon J. Lutz ◽  
Richard L. Lieber

Sarcomere length and first-order diffraction line width were measured by laser diffraction during elongation of activated frog tibialis anterior muscle fiber bundles (i.e., eccentric contraction) at nominal fiber strains of 10, 25, or 35% ( n = 18) for 10 successive contractions. Tetanic tension, measured just before each eccentric contraction, differed significantly among strain groups and changed dramatically during the 10-contraction treatment ( P < 0.01). Average maximum tetanic tension for the three groups measured before any treatment was 203.7 ± 6.8 kN/m2, but after the 10-eccentric contraction sequence decreased to 180.3 ± 3.8, 125.1 ± 7.8, and 78.3 ± 5.1 kN/m2 for the 10, 25, and 35% strain groups, respectively ( P < 0.0001). Addition of 10 mM caffeine to the bathing medium decreased the loss of tetanic tension in the 10% strain group but had only a minimal effect on either the 25 or 35% strain groups. Diffraction pattern line width, a measure of sarcomere length heterogeneity, increased significantly with muscle activation and then continued to increase with successive stretches of the activated muscle. Line width increase after each stretch was significantly correlated with the lower yield tension of the successive contractile record. These data demonstrate a direct association and, perhaps, a causal relationship between sarcomere strain and fiber bundle injury. They also demonstrate that muscle injury is accompanied by a progressive increase in sarcomere length heterogeneity, yielding lower yield tension as injury progresses.


2018 ◽  
Vol 42 (4) ◽  
pp. 672-684 ◽  
Author(s):  
Jack A. Rall

One of the most iconic images in biology is the cross-striated appearance of a skeletal muscle fiber. The repeating band pattern shows that all of the sarcomeres are the same length. All of the A bands are the same length and are located in the middle of the sarcomeres. Furthermore, all of the myofibrils are transversely aligned across the muscle fiber. It has been known for 300 yr that skeletal muscle is striated, but only in the last 40 yr has a molecular understanding of the striations emerged. In the 1950s it was discovered that the extraction of myosin from myofibrils abolished the A bands, and the myofibrils were no longer striated. With the further extraction of actin, only the Z disks remained. Strangely, the sarcomere length did not change, and these “ghost” myofibrils still exhibited elastic behavior. The breakthrough came in the 1970s with the discovery of the gigantic protein titin. Titin, an elastic protein ~1 µm in length, runs from the Z disk to the middle of the A band and ensures that each sarcomere is the same length. Titin anchors the A band in the middle of the sarcomere and may determine thick-filament length and thus A-band length. In the 1970s it was proposed that the intermediate filament desmin, which surrounds the Z disks, connects adjacent myofibrils, resulting in the striated appearance of a skeletal muscle fiber.


2017 ◽  
Vol 37 (1) ◽  
pp. 0106003
Author(s):  
郑祥亮 Zheng Xiangliang ◽  
孙权社 Sun Quanshe ◽  
韩忠 Han Zhong ◽  
刘志明 Liu Zhiming ◽  
赵发财 Zhao Facai

Sign in / Sign up

Export Citation Format

Share Document