scholarly journals Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion

2011 ◽  
Vol 214 (15) ◽  
pp. 2603-2615 ◽  
Author(s):  
K. M. Sheffield ◽  
R. W. Blob
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Christine M Vega ◽  
Miriam A Ashley-Ross

Synopsis Animals live in heterogeneous environments must navigate in order to forage or capture food, defend territories, and locate mates. These heterogeneous environments have a variety of substrates that differ in their roughness, texture, and other properties, all of which may alter locomotor performance. Despite such natural variation in substrate, many studies on locomotion use noncompliant surfaces that either are unrepresentative of the range of substrates experienced by species or underestimate maximal locomotor capabilities. The goal of this study was to determine the role of forefeet and hindfeet on substrates with different properties during walking in a generalized sprawling tetrapod, the tiger salamander (Ambystoma tigrinum). Adult salamanders (n = 4, SVL = 11.2–14.6 cm) walked across level dry sand (DS), semi-soft plaster of Paris (PoP), wet sand (WS), and a hard, noncompliant surface (table)—substrates that vary in compliance. Trials were filmed in dorsal and anterior views. Videos were analyzed to determine the number of digits and surface area of each foot in contact with the substrate. The surface area of the forelimbs contacting the substrate was significantly greater on DS and PoP than on WS and the table. The surface area of the hindlimbs contacting the substrate was significantly greater on DS than on all other substrates. There were no significant differences in the time that the fore- or hindfeet were in contact with the substrate as determined by the number of digits. We conclude that salamanders modulate the use of their feet depending on the substrate, particularly on DS which is known to increase the mechanical work and energy expended during locomotion owing to the fluid nature of its loose particles. More studies are needed to test a wider range of substrates and to incorporate behavioral data from field studies to get a better understanding of how salamanders are affected by different substrates in their natural environment.


Genome ◽  
2013 ◽  
Vol 56 (7) ◽  
pp. 407-414 ◽  
Author(s):  
Jacqueline M. Doyle ◽  
Gregor Siegmund ◽  
Joseph D. Ruhl ◽  
Soo Hyung Eo ◽  
Matthew C. Hale ◽  
...  

Historically, many population genetics studies have utilized microsatellite markers sampled at random from the genome and presumed to be selectively neutral. Recent studies, however, have shown that microsatellites can occur in transcribed regions, where they are more likely to be under selection. In this study, we mined microsatellites from transcriptomes generated by 454-pyrosequencing for three vertebrate species: lake sturgeon (Acipenser fulvescens), tiger salamander (Ambystoma tigrinum), and kangaroo rat (Dipodomys spectabilis). We evaluated (i) the occurrence of microsatellites across species; (ii) whether particular gene ontology terms were over-represented in genes that contained microsatellites; (iii) whether repeat motifs were located in untranslated regions or coding sequences of genes; and (iv) in silico polymorphism. Microsatellites were less common in tiger salamanders than in either lake sturgeon or kangaroo rats. Across libraries, trinucleotides were found more frequently than any other motif type, presumably because they do not cause frameshift mutations. By evaluating variation across reads assembled to a given contig, we were able to identify repeat motifs likely to be polymorphic. Our study represents one of the first comparative data sets on the distribution of vertebrate microsatellites within expressed genes. Our results reinforce the idea that microsatellites do not always occur in noncoding DNA, but commonly occur in expressed genes.


2004 ◽  
Vol 82 (9) ◽  
pp. 1477-1483 ◽  
Author(s):  
Matthew J Parris ◽  
Alison Davis ◽  
James P Collins

Pathogens can alter host behavior and affect the outcome of predator-prey interactions. Acute phase responses of hosts (e.g., a change in activity level or behavioral fever) often signal an infection, but the ecological consequences of host behavioral changes largely are unexplored, particularly for directly transmitted (i.e., single-host) pathogens. We performed three experiments to test the hypothesis that a pathogen, Ambystoma tigrinum virus (ATV), alters host behavior of Sonoran tiger salamanders (Ambystoma tigrinum stebbinsi Lowe, 1954) and enhances predation. In the first experiment, salamander larvae exposed to ATV experienced 48% lower mortality from dragonfly Anax junius (Drury, 1773) larvae than those in controls. Second, uninfected and infected larvae exposed to the nonlethal (caged) presence of predators did not significantly differ in their distance from the predator. Infected salamanders significantly increased their activity level relative to those in controls in predator-free conditions. Finally, ATV-infected larvae preferred significantly warmer temperatures than uninfected larvae, but larvae reared at the thermal maximum for the virus all died. High host activity level yet retention of effective antipredator responses likely benefits ATV because this single-host pathogen relies on host survival for transmission. Preference for warmer temperatures may be associated with the host response to pathogens and may help fight infection.


2021 ◽  
Author(s):  
Sandy Momoe Kawano ◽  
Richard W. Blob

Amphibious fishes and salamanders are valuable functional analogs for vertebrates that spanned the water-to-land transition. However, investigations of walking mechanics have focused on terrestrial salamanders and, thus, may better reflect the capabilities of stem tetrapods that were already terrestrial. The earliest tetrapods were aquatic, so salamanders that are not primarily terrestrial may yield more appropriate data for modelling the incipient stages of terrestrial locomotion. In the present study, locomotor biomechanics were quantified from semi-aquatic Pleurodeles waltl, a salamander that spends most of its adult life in water, and then compared to a primarily terrestrial salamander (Ambystoma tigrinum) and semi-aquatic fish (Periophthalmus barbarus) to evaluate whether walking mechanics show greater similarity between species with ecological versus phylogenetic similarities. Ground reaction forces (GRFs) from individual limbs or fins indicated that the pectoral appendages of each taxon had distinct patterns of force production, but hind limb forces were comparable between the salamanders. The rate of force development ('yank') was sometimes slower in P. waltl but generally comparable between the three species. Finally, medial inclination of the GRF in P. waltl was intermediate between semi-aquatic fish and terrestrial salamanders, potentially elevating bone stresses among more aquatic taxa as they move on land. These data provide a framework for modelling stem tetrapods using an earlier stage of quadrupedal locomotion that was powered primarily by the hind limbs (i.e., "rear-wheel drive"), and reveal mechanisms for appendages to generate propulsion in three locomotor strategies that are presumed to have occurred across the water-to-land transition in vertebrate evolution.


Copeia ◽  
2003 ◽  
Vol 2003 (3) ◽  
pp. 601-607 ◽  
Author(s):  
Elizabeth W. Davidson ◽  
Matthew Parris ◽  
James P. Collins ◽  
Joyce E. Longcore ◽  
Allan P. Pessier ◽  
...  

1999 ◽  
Vol 141 (1) ◽  
pp. 124-139 ◽  
Author(s):  
KJERSTEN L. LARSON ◽  
WALTER DUFFY ◽  
ERIN JOHNSON ◽  
MICHELE F. DONOVAN ◽  
MICHAEL J. LANNOO

1992 ◽  
Vol 162 (1) ◽  
pp. 107-130 ◽  
Author(s):  
LARRY M. FROLICH ◽  
ANDREW A. BIEWENER

Aquatic neotenic and terrestrial metamorphosed salamanders {Ambystoma tigrinum) were videotaped simultaneously with electromyographic (EMG) recording from five epaxial myotomes along the animal's trunk during swimming in a flow tank and trotting on a treadmill to investigate axial function during aquatic and terrestrial locomotion. Neotenic and metamorphosed individuals swim using very similar axial wave patterns, despite significant differences in axial morphology. During swimming, both forms exhibit traveling waves of axial flexion and muscle activity, with an increasing EMG-mechanical delay as these waves travel down the trunk. In contrast to swimming, during trotting metamorphosed individuals exhibit a standing wave of axial flexion produced by synchronous activation of ipsilateral epaxial myotomes along the trunk. Thus, metamorphosed individuals employ two distinct axial motor programs -- one used during swimming and one used during trotting. The transition from a traveling axial wave during swimming to a standing axial wave during trotting in A. tigrinum may be an appropriate analogy for similar transitions in axial locomotor function during theoriginal evolution of terrestriality in early tetrapods.


Sign in / Sign up

Export Citation Format

Share Document