noncoding dna
Recently Published Documents


TOTAL DOCUMENTS

197
(FIVE YEARS 37)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
Charles H. Klein

Since Francis Crick and James D. Watson’s discovery of DNA in 1953, researchers, policymakers, and the general public have sought to understand the ways in which genetics shapes human lives. A milestone in these efforts was the completion of the Human Genome Project’s (HGP) sequencing of Homo sapiens’ nearly three million base pairs in 2003. Yet, despite the excitement surrounding the HGP and the discovery of the structural genetic underpinnings of several debilitating diseases, the vast majority of human health outcomes have not been linked to a single gene. Moreover, even when genes have been associated with particular diseases (e.g., breast and colon cancer), it is not well understood why certain genetically predisposed individuals become ill and others do not. Nor has the HGP’s map provided sufficient information to understand the actual functioning of the human genetic code, including the role of noncoding DNA (“junk DNA”) in regulating molecular genetic processes. In response, a growing number of scientists have shifted their attention from structural genetics to epigenetics, the study of how genes express themselves in particular situations and environments. Anthropologists play roles in these applications of epigenetics to real-world settings. Their new theoretical frameworks unsettle the nature-versus-nurture binary and support biocultural anthropological research demonstrating how race becomes biology and embodies social inequalities and health disparities across generations. Ethnographically grounded case studies further highlight the diverse epigenetic logics held by healthcare providers, researchers, and patient communities and how these translations of scientific knowledge shape medical practice and basic research. The growing field of environmental epigenetics also offers a wide range of options for students and practitioners interested in applying the anthropological toolkit in epigenetics-related work.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1855
Author(s):  
Achinya Phuakrod ◽  
Witsaroot Sripumkhai ◽  
Wutthinan Jeamsaksiri ◽  
Pattaraluck Pattamang ◽  
Sumat Loymek ◽  
...  

Lymphatic filariasis (LF) is a neglected major tropical disease that is a leading cause of permanent and long-term disability worldwide. Significant progress made by the Global Programme to Eliminate Lymphatic Filariasis (GPELF) has led to a substantial decrease in the levels of infection. In this limitation, DNA detection of lymphatic filariae could be useful due to it capable of detecting low level of the parasites. In the present study, we developed a diagnostic assay that combines a miniPCR with a duplex lateral flow dipstick (DLFD). The PCR primers were designed based on the HhaI and SspI repetitive noncoding DNA sequences of Brugia malayi and Wuchereria bancrofti, respectively. The limits of detection and crossreactivity of the assay were evaluated. In addition, blood samples were provided by Thais living in a brugian filariasis endemic area. The miniPCR-DLFD assay exhibited a detection limit of 2 and 4 mf per milliliter (mL) of blood for B. malayi as well as W. bancrofti, respectively, and crossamplification was not observed with 11 other parasites. The result obtained from the present study was in accordance with the thick blood smear staining for the known cases. Thus, a miniPCR-DLFD is an alternative tool for the diagnosis of LF in point-of-collection settings with a modest cost (~USD 5) per sample.


2021 ◽  
Vol 18 (10) ◽  
pp. 1196-1203 ◽  
Author(s):  
Žiga Avsec ◽  
Vikram Agarwal ◽  
Daniel Visentin ◽  
Joseph R. Ledsam ◽  
Agnieszka Grabska-Barwinska ◽  
...  

AbstractHow noncoding DNA determines gene expression in different cell types is a major unsolved problem, and critical downstream applications in human genetics depend on improved solutions. Here, we report substantially improved gene expression prediction accuracy from DNA sequences through the use of a deep learning architecture, called Enformer, that is able to integrate information from long-range interactions (up to 100 kb away) in the genome. This improvement yielded more accurate variant effect predictions on gene expression for both natural genetic variants and saturation mutagenesis measured by massively parallel reporter assays. Furthermore, Enformer learned to predict enhancer–promoter interactions directly from the DNA sequence competitively with methods that take direct experimental data as input. We expect that these advances will enable more effective fine-mapping of human disease associations and provide a framework to interpret cis-regulatory evolution.


Author(s):  
Richard V Miller ◽  
Rafik Neme ◽  
Derek M Clay ◽  
Jananan S Pathmanathan ◽  
Michael W Lu ◽  
...  

Abstract The germline-soma divide is a fundamental distinction in developmental biology, and different genes are expressed in germline and somatic cells throughout metazoan life cycles. Ciliates, a group of microbial eukaryotes, exhibit germline-somatic nuclear dimorphism within a single cell with two different genomes. The ciliate Oxytricha trifallax undergoes massive RNA-guided DNA elimination and genome rearrangement to produce a new somatic macronucleus (MAC) from a copy of the germline micronucleus (MIC). This process eliminates noncoding DNA sequences that interrupt genes and also deletes hundreds of germline-limited open reading frames (ORFs) that are transcribed during genome rearrangement. Here, we update the set of transcribed germline-limited ORFs (TGLOs) in O. trifallax. We show that TGLOs tend to be expressed during nuclear development and then are absent from the somatic MAC. We also demonstrate that exposure to synthetic RNA can reprogram TGLO retention in the somatic MAC and that TGLO retention leads to transcription outside the normal developmental program. These data suggest that TGLOs represent a group of developmentally regulated protein-coding sequences whose gene expression is terminated by DNA elimination.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andreas Lange ◽  
Prajal H. Patel ◽  
Brennen Heames ◽  
Adam M. Damry ◽  
Thorsten Saenger ◽  
...  

AbstractComparative genomic studies have repeatedly shown that new protein-coding genes can emerge de novo from noncoding DNA. Still unknown is how and when the structures of encoded de novo proteins emerge and evolve. Combining biochemical, genetic and evolutionary analyses, we elucidate the function and structure of goddard, a gene which appears to have evolved de novo at least 50 million years ago within the Drosophila genus. Previous studies found that goddard is required for male fertility. Here, we show that Goddard protein localizes to elongating sperm axonemes and that in its absence, elongated spermatids fail to undergo individualization. Combining modelling, NMR and circular dichroism (CD) data, we show that Goddard protein contains a large central α-helix, but is otherwise partially disordered. We find similar results for Goddard’s orthologs from divergent fly species and their reconstructed ancestral sequences. Accordingly, Goddard’s structure appears to have been maintained with only minor changes over millions of years.


2021 ◽  
Vol 22 (4) ◽  
pp. 2137
Author(s):  
Anna Wysocka ◽  
Agnieszka Zwolak

The human paraoxonase (PON) gene cluster is comprised of three contiguous genes (PON1, PON2 and PON3) of presumably common origin coding three lactonases of highly similar structure and substrate specificity. The catalytic activity of PON proteins is directed toward artificial organophosphates and in physiological conditions toward thiolactones and oxidized phospholipids. Consequently, PON enzymes are regarded as an effective defense against oxidative stress and, as a result, against atherosclerosis development. Additionally, both PON’s serum activity and its concentration are influenced by several polymorphic variations in coding and noncoding DNA regions of the PON gene cluster remaining in linkage disequilibrium. Hence, the genetic polymorphism of the PON gene cluster may contribute to atherosclerotic process progression or deceleration. In this review the authors analyzed the relevance of noncoding DNA polymorphic variations of PON genes in atherosclerosis-related diseases involving coronary and peripheral artery disease, stroke, diabetes mellitus, dementia and renal disease and concluded that the effect of PON gene cluster’ polymorphism has a considerable impact on the course and outcome in these conditions. The following PON genetic variations may serve as additional predictors of the risk of atherosclerosis in selected populations and individuals.


2021 ◽  
Author(s):  
Yin Yao ◽  
Martin C. Frith

AbstractProtein fossils, i.e. noncoding DNA descended from coding DNA, arise frequently from transposable elements (TEs), decayed genes, and viral integrations. They can reveal, and mislead about, evolutionary history and relationships. They have been detected by comparing DNA to protein sequences, but current methods are not optimized for this task. We describe a powerful DNA-protein homology search method. We use a 64×21 substitution matrix, which is fitted to sequence data, automatically learning the genetic code. We detect subtly homologous regions by considering alternative possible alignments between them, and calculate significance (probability of occurring by chance between random sequences). Our method detects TE protein fossils much more sensitively than blastx, and > 10× faster. Of the ~7 major categories of eukaryotic TE, three have not been found in mammals: we find two of them in the human genome, polinton and DIRS/Ngaro. This method increases our power to find ancient fossils, and perhaps to detect non-standard genetic codes. The alternative-alignments and significance paradigm is not specific to DNA-protein comparison, and could benefit homology search generally.


2020 ◽  
Vol 21 (23) ◽  
pp. 9206
Author(s):  
Irina O. Suchkova ◽  
Elena V. Borisova ◽  
Eugene L. Patkin

Epilepsy is a neurological disease with different clinical forms and inter-individuals heterogeneity, which may be associated with genetic and/or epigenetic polymorphisms of tandem-repeated noncoding DNA. These polymorphisms may serve as predictive biomarkers of various forms of epilepsy. ACAP3 is the protein regulating morphogenesis of neurons and neuronal migration and is an integral component of important signaling pathways. This study aimed to carry out an association analysis of the length polymorphism and DNA methylation of the UPS29 minisatellite of the ACAP3 gene in patients with epilepsy. We revealed an association of short UPS29 alleles with increased risk of development of symptomatic and cryptogenic epilepsy in women, and also with cerebrovascular pathologies, structural changes in the brain, neurological status, and the clinical pattern of seizures in both women and men. The increase of frequency of hypomethylated UPS29 alleles in men with symptomatic epilepsy, and in women with both symptomatic and cryptogenic epilepsy was observed. For patients with hypomethylated UPS29 alleles, we also observed structural changes in the brain, neurological status, and the clinical pattern of seizures. These associations had sex-specific nature similar to a genetic association. In contrast with length polymorphism epigenetic changes affected predominantly the long UPS29 allele. We suppose that genetic and epigenetic alterations UPS29 can modify ACAP3 expression and thereby affect the development and clinical course of epilepsy.


2020 ◽  
Vol 16 (S3) ◽  
Author(s):  
Ellen M. Wijsman ◽  
Tyler R. Day ◽  
Timothy A. Thornton ◽  
Andrea R. Horimoto ◽  
Elizabeth E. Blue ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shraddha Puntambekar ◽  
Rachel Newhouse ◽  
Jaime San Miguel Navas ◽  
Ruchi Chauhan ◽  
Grégoire Vernaz ◽  
...  

AbstractNovel open reading frames (nORFs) with coding potential may arise from noncoding DNA. Not much is known about their emergence, functional role, fixation in a population or contribution to adaptive radiation. Cichlids fishes exhibit extensive phenotypic diversification and speciation. Encounters with new environments alone are not sufficient to explain this striking diversity of cichlid radiation because other taxa coexistent with the Cichlidae demonstrate lower species richness. Wagner et al. analyzed cichlid diversification in 46 African lakes and reported that both extrinsic environmental factors and intrinsic lineage-specific traits related to sexual selection have strongly influenced the cichlid radiation, which indicates the existence of unknown molecular mechanisms responsible for rapid phenotypic diversification, such as emergence of novel open reading frames (nORFs). In this study, we integrated transcriptomic and proteomic signatures from two tissues of two cichlids species, identified nORFs and performed evolutionary analysis on these nORF regions. Our results suggest that the time scale of speciation of the two species and evolutionary divergence of these nORF genomic regions are similar and indicate a potential role for these nORFs in speciation of the cichlid fishes.


Sign in / Sign up

Export Citation Format

Share Document