locomotor performance
Recently Published Documents


TOTAL DOCUMENTS

420
(FIVE YEARS 87)

H-INDEX

51
(FIVE YEARS 4)

Author(s):  
Jesse W Young ◽  
Adam D Foster ◽  
Gabrielle A Russo ◽  
Gregory A Smith ◽  
Michael T Butcher

Abstract For many animals, the juvenile stage of life can be particularly perilous. Once independent, immature animals must often complete the same basic survival functions as adults despite smaller body size and other growth-related limits on performance. Because, by definition, juveniles have yet to reproduce, we should expect strong selection for mechanisms to offset these ontogenetic limitations, allowing individuals to reach reproductive adulthood and maintain Darwinian fitness. We use an integrated ontogenetic dataset on morphology, locomotor performance, and longevity in wild cottontail rabbits (Sylvilagus floridanus, Allen 1848) to test the hypothesis that prey animals are under selective pressure to maximize juvenile performance. We predicted that 1) juveniles would accelerate more quickly than adults, allowing them to reach adult-like escape speeds, and 2) juveniles with greater levels of performance should survive for longer durations in the wild, thus increasing their reproductive potential. Using high speed video and force platform measurements, we quantified burst acceleration, escape speed, and mechanical power production in 42 wild-caught S. floridanus (29 juveniles, 13 adults; all rabbits >1kg in body mass were designated to be adults, based on published growth curves and evidence of epiphyseal fusion). A subsample of 22 rabbits (16 juveniles, 6 adults) were fitted with radio-telemetry collars for documenting survivorship in the wild. We found that acceleration and escape speed peaked in the late juvenile period in S. floridanus, at an age range that coincides with a period of pronounced demographic attrition in wild populations. Differences in mass-specific mechanical power production explained ∼75% of the variation in acceleration across the dataset, indicating that juvenile rabbits outpace adults by producing more power per unit body mass. We found a positive, though non-significant, association between peak escape speed and survivorship duration in the wild, suggesting a complex relationship between locomotor performance and fitness in growing S. floridanus.


2021 ◽  
Vol 9 ◽  
Author(s):  
Theja Abayarathna ◽  
Jonathan K. Webb

In many lizards, a mother’s choice of nest site can influence the thermal and hydric regimes experienced by developing embryos, which in turn can influence key traits putatively linked to fitness, such as body size, learning ability, and locomotor performance. Future increases in nest temperatures predicted under climate warming could potentially influence hatchling traits in many reptiles. In this study, we investigated whether future nest temperatures affected the thermal preferences of hatchling velvet geckos, Amalosia lesueurii. We incubated eggs under two fluctuating temperature treatments; the warm treatment mimicked temperatures of currently used communal nests (mean = 24.3°C, range 18.4–31.1°C), while the hot treatment (mean = 28.9°C, range 20.7–38.1°C) mimicked potential temperatures likely to occur during hot summers. We placed hatchlings inside a thermal gradient and measured their preferred body temperatures (Tbs) after they had access to food, and after they had fasted for 5 days. We found that hatchling feeding status significantly affected their preferred Tbs. Hatchlings maintained higher Tbs after feeding (mean = 30.6°C, interquartile range = 29.6–32.0°C) than when they had fasted for 5 d (mean = 25.8°C, interquartile range = 24.7–26.9°C). Surprisingly, we found that incubation temperatures did not influence the thermal preferences of hatchling velvet geckos. Hence, predicting how future changes in nest temperatures will affect reptiles will require a better understanding of how incubation and post-hatchling environments shape hatchling phenotypes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jie He ◽  
Xiaolong Tang ◽  
Peng Pu ◽  
Tao Zhang ◽  
Zhiyi Niu ◽  
...  

Investigating how highland amphibians respond to changes in ambient temperature may be of great significance for their fate prediction and effective conservation in the background of global warming. Here, using field individuals as the control group, we investigated the influence of high temperatures (20.5 and 25.5°C) and heat wave (15–26.6°C) on the thermal preference, critical thermal limits, locomotor performance, oxidative stress, and antioxidant enzyme activities in high-altitude frog Nanorana pleskei (3,490 m) endemic to the Qinghai-Tibet Plateau (QTP). After 2 weeks of acclimation to high temperatures and heat wave, the thermal preference (Tpref), critical thermal maximum (CTmax), and range of tolerable temperature significantly increased, while the critical thermal minimum (CTmin) was significantly decreased. The total time of jump to exhaustion significantly decreased, and burst swimming speed significantly increased in frogs acclimated in the high temperature and heat wave groups compared with the field group. In the high temperature group, the level of H2O2 and lipid peroxide (malondialdehyde, MDA), as well as the activities of glutathione peroxidase (GPX), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) significantly increased in the liver or muscle. However, in the heat wave group, the MDA content significantly decreased in the liver, and antioxidants activities decreased in the liver and muscle except for CAT activities that were significantly increased in the liver. These results indicated that N. pleskei could respond to the oxidative stress caused by high temperatures by enhancing the activity of antioxidant enzymes. The heat wave did not appear to cause oxidative damage in N. pleskei, which may be attributed to the fact that they have successfully adapted to the dramatic temperature fluctuations on the QTP.


2021 ◽  
pp. 103173
Author(s):  
Agostina Dematteis ◽  
Oscar Aníbal Stellatelli ◽  
Carolina Block ◽  
Laura Estela Vega ◽  
Juan Esteban Dajil ◽  
...  

Author(s):  
Naiane Arantes Silva ◽  
Gabriel Henrique O. Caetano ◽  
Pedro Henrique Campelo ◽  
Vitor Hugo Gomes Lacerda Cavalcante ◽  
Leandro Braga Godinho ◽  
...  

Caudal autotomy is a dramatic adaptation used by many lizard species to evade predators. Most studies to date indicate that caudal autotomy impairs lizard locomotor performance. Surprisingly, some species bearing the longest tails show negligible impacts of caudal autotomy on sprint speed. Part of this variation has been attributed to lineage effects. For the first time, we model the effects of caudal autotomy on the locomotor performance of a gymnophthalmid lizard, Micrablepharus atticolus, characterized by a long and bright blue tail. To improve model accuracy, we incorporated the effects of several covariates. We found that body temperature, pregnancy, mass, collection site, and the length of the regenerated portion of the tail were the most important predictors of locomotor performance in Micrablepharus atticolus. However, sprint speed was unaffected by tail loss. Apparently, the long tail of M. atticolus is more useful when using undulation amidst the leaf litter and not when using quadrupedal locomotion on a flat surface. Our findings highlight the intricate relationships among physiological, morphological, and behavioral traits. We suggest that future studies about the impacts of caudal autotomy among long-tailed lizards should consider the role of different microhabitats/substrates on locomotor performance, using laboratory conditions that closely mimic their natural environments.


2021 ◽  
Vol 207 ◽  
pp. 105591
Author(s):  
Lyndsey K. Tanabe ◽  
Marion Steenacker ◽  
Mohd Uzair Rusli ◽  
Michael L. Berumen

Sign in / Sign up

Export Citation Format

Share Document