scholarly journals Role of the lateral line mechanosensory system in directionality of goldfish auditory evoked escape response

2011 ◽  
Vol 214 (20) ◽  
pp. 3358-3367 ◽  
Author(s):  
M. Mirjany ◽  
T. Preuss ◽  
D. S. Faber
Author(s):  
Robert C. Eaton ◽  
Randolf Didomenico
Keyword(s):  

1998 ◽  
Vol 201 (22) ◽  
pp. 3041-3055 ◽  
Author(s):  
MW Westneat ◽  
ME Hale ◽  
MJ Mchenry ◽  
JH Long

The fast-start escape response is a rapid, powerful body motion used to generate high accelerations of the body in virtually all fishes. Although the neurobiology and behavior of the fast-start are often studied, the patterns of muscle activity and muscle force production during escape are less well understood. We studied the fast-starts of two basal actinopterygian fishes (Amia calva and Polypterus palmas) to investigate the functional morphology of the fast-start and the role of intramuscular pressure (IMP) in escape behavior. Our goals were to determine whether IMP increases during fast starts, to look for associations between muscle activity and elevated IMP, and to determine the functional role of IMP in the mechanics of the escape response. We simultaneously recorded the kinematics, muscle activity patterns and IMP of four A. calva and three P. palmas during the escape response. Both species generated high IMPs of up to 90 kPa (nearly 1 atmosphere) above ambient during the fast-start. The two species showed similar pressure magnitudes but had significantly different motor patterns and escape performance. Stage 1 of the fast-start was generated by simultaneous contraction of locomotor muscle on both sides of the body, although electromyogram amplitudes on the contralateral (convex) side of the fish were significantly lower than on the ipsilateral (concave) side. Simultaneous recordings of IMP, escape motion and muscle activity suggest that pressure change is caused by the contraction and radial swelling of cone-shaped myomeres. We develop a model of IMP production that incorporates myomere geometry, the concept of constant-volume muscular hydrostats, the relationship between fiber angle and muscle force, and the forces that muscle fibers produce. The timing profile of pressure change, behavior and muscle action indicates that elevated muscle pressure is a mechanism of stiffening the body and functions in force transmission during the escape response.


2014 ◽  
Vol 46 (5) ◽  
pp. e94-e94 ◽  
Author(s):  
Yingzi He ◽  
Honglin Mei ◽  
Huiqian Yu ◽  
Shan Sun ◽  
Wenli Ni ◽  
...  

2019 ◽  
Vol 117 (38) ◽  
pp. 23286-23291 ◽  
Author(s):  
Jeffrey S. Dason ◽  
Amanda Cheung ◽  
Ina Anreiter ◽  
Vanessa A. Montemurri ◽  
Aaron M. Allen ◽  
...  

Painful or threatening experiences trigger escape responses that are guided by nociceptive neuronal circuitry. Although some components of this circuitry are known and conserved across animals, how this circuitry is regulated at the genetic and developmental levels is mostly unknown. To escape noxious stimuli, such as parasitoid wasp attacks,Drosophila melanogasterlarvae generate a curling and rolling response. Rover and sitter allelic variants of theDrosophila foraging(for) gene differ in parasitoid wasp susceptibility, suggesting a link betweenforand nociception. By optogenetically activating cells associated with each offor’s promoters (pr1–pr4), we show that pr1 cells regulate larval escape behavior. In accordance with rover and sitter differences in parasitoid wasp susceptibility, we found that rovers have higher pr1 expression and increased sensitivity to nociception relative to sitters. Thefornull mutants display impaired responses to thermal nociception, which are rescued by restoringforexpression in pr1 cells. Conversely, knockdown offorin pr1 cells phenocopies thefornull mutant. To gain insight into the circuitry underlying this response, we used an intersectional approach and activity-dependent GFP reconstitution across synaptic partners (GRASP) to show that pr1 cells in the ventral nerve cord (VNC) are required for the nociceptive response, and that multidendritic sensory nociceptive neurons synapse onto pr1 neurons in the VNC. Finally, we show that activation of the pr1 circuit during development suppresses the escape response. Our data demonstrate a role offorin larval nociceptive behavior. This function is specific toforpr1 neurons in the VNC, guiding a developmentally plastic escape response circuit.


2002 ◽  
Vol 99 (25) ◽  
pp. 16297-16302 ◽  
Author(s):  
N. B. David ◽  
D. Sapede ◽  
L. Saint-Etienne ◽  
C. Thisse ◽  
B. Thisse ◽  
...  

2009 ◽  
Vol 5 (4) ◽  
pp. 477-479 ◽  
Author(s):  
M.J. McHenry ◽  
K.E. Feitl ◽  
J.A. Strother ◽  
W.J. Van Trump

Larval fishes have a remarkable ability to sense and evade the feeding strike of a predator fish with a rapid escape manoeuvre. Although the neuromuscular control of this behaviour is well studied, it is not clear what stimulus allows a larva to sense a predator. Here we show that this escape response is triggered by the water flow created during a predator's strike. Using a novel device, the impulse chamber, zebrafish ( Danio rerio ) larvae were exposed to this accelerating flow with high repeatability. Larvae responded to this stimulus with an escape response having a latency (mode=13–15 ms) that was fast enough to respond to predators. This flow was detected by the lateral line system, which includes mechanosensory hair cells within the skin. Pharmacologically ablating these cells caused the escape response to diminish, but then recover as the hair cells regenerated. These findings demonstrate that the lateral line system plays a role in predator evasion at this vulnerable stage of growth in fishes.


Sign in / Sign up

Export Citation Format

Share Document