escape behavior
Recently Published Documents


TOTAL DOCUMENTS

513
(FIVE YEARS 79)

H-INDEX

50
(FIVE YEARS 5)

2024 ◽  
Vol 84 ◽  
Author(s):  
H. Reiche ◽  
L. S. L. Hohl ◽  
O. Rocha-Barbosa

Abstract Amphisbaenians are fossorial reptiles that have a cylindrical and elongated body covered with scales arranged in rings, and are all apodal, except for the three species of the genus Bipes. The amphisbaenian diet consists of a variety of invertebrates and small vertebrates. As these animals live underground, many aspects of their natural history are difficult to study. Most feeding studies of amphisbaenians have focused on the composition of the diet and feeding ecology, and the data available on feeding behavior are based on precursory observations. The present study describes the food capture behavior of Leposternon microcephalum Wagler, 1824 in captivity. In this experiment we used non-live bait (moist cat food), which was placed near a burrow opening, on the surface of the substrate. Three animals were monitored visually and filmed using cellphone cameras deployed at fixed points, to capture images from the dorsal and lateral perspectives of the study subjects. Two principal types of behavior were observed: the capture of food and defense mechanisms. The strategies used to capture the food were similar to those observed in other fossorial species. Although the backward movement has already been observed and described, we were able to record this movement being used as an escape strategy. These findings enrich our knowledge on different aspects of the natural history of the amphisbaenians.


2021 ◽  
Author(s):  
Emmy F Tsang ◽  
Camilla Orlandini ◽  
Rahul Sureka ◽  
Alvaro H Crevenna ◽  
Emerald Perlas ◽  
...  

The dorsal periaqueductal gray is a midbrain structure implicated in the control of defensive behaviors and the processing of painful stimuli. Electrical stimulation or optogenetic activation of excitatory neurons in dorsal periaqueductal gray results in freezing or flight behavior at low or high intensity, respectively. However, the output structures that mediate these defensive behaviors remain unconfirmed. Here we carried out a targeted classification of neuron types in dorsal periaqueductal gray using multiplex in situ sequencing and then applied cell-type and projection-specific optogenetic stimulation to identify projections from dorsal periaqueductal gray to the cuneiform nucleus that promoted goal-directed flight behavior. These data confirmed that descending outputs from dorsal periaqueductal gray serve as a trigger for directed escape behavior.


Author(s):  
Carola Petersen ◽  
Barbara Pees ◽  
Christina Martínez Christophersen ◽  
Matthias Leippe

In comparison with the standard monoxenic maintenance in the laboratory, rearing the nematode Caenorhabditis elegans on its natural microbiota improves its fitness and immunity against pathogens. Although C. elegans is known to exhibit choice behavior and pathogen avoidance behavior, little is known about whether C. elegans actively chooses its (beneficial) microbiota and whether the microbiota influences worm behavior. We examined eleven natural C. elegans isolates in a multiple-choice experiment for their choice behavior toward four natural microbiota bacteria and found that microbiota choice varied among C. elegans isolates. The natural C. elegans isolate MY2079 changed its choice behavior toward microbiota isolate Ochrobactrum vermis MYb71 in both multiple-choice and binary-choice experiments, in particular on proliferating bacteria: O. vermis MYb71 was chosen less than other microbiota bacteria or OP50, but only after preconditioning with MYb71. Examining escape behavior and worm fitness on MYb71, we ruled out pathogenicity of MYb71 and consequently learned pathogen avoidance behavior as the main driver of the behavioral change toward MYb71. The change in behavior of C. elegans MY2079 toward microbiota bacterium MYb71 demonstrates how the microbiota influences the worm’s choice. These results might give a baseline for future research on host–microbiota interaction in the C. elegans model.


2021 ◽  
Author(s):  
Kinsey M Brock ◽  
Indiana E. Madden

Variation in color morph behavior is an important factor in the maintenance of color polymorphism. Alternative anti-predator behaviors are often associated with morphological traits such as coloration, possibly because predator-mediated viability selection favors certain combinations of anti-predator behavior and color. The Aegean wall lizard, Podarcis erhardii, is color polymorphic and populations can have up to three monochromatic morphs: orange, yellow, and white. We investigated whether escape behaviors differ among coexisting color morphs, and if morph behaviors are repeatable across different populations with the same predator species. Specifically, we assessed color morph flight initiation distance (FID), distance to the nearest refuge (DNR), and distance to chosen refuge (DR) in two populations of Aegean wall lizards from Naxos island. We also analyzed the type of refugia color morphs selected and their re-emergence behavior following a standardized intrusion event. We found that orange morphs have different escape behaviors from white and yellow morphs, and these differences are consistent in both of the populations we sampled. Orange morphs have shorter FIDs, DNRs, and DRs, select different refuge types, and re-emerge less often after an intruder event compared to white and yellow morphs. Observed differences in color morph escape behaviors support the idea that morphs have evolved alternative behavioral strategies that may play a role in population-level morph maintenance and loss.


2021 ◽  
Author(s):  
Dalia Murra ◽  
Kathryn L Hilde ◽  
Anne Fitzpatrick ◽  
Pamela M Maras ◽  
Stanley J. Watson ◽  
...  

Evaluating and coping with stressful social events as they unfold is a critical strategy in overcoming them without long-lasting detrimental effects. Individuals display a wide range of responses to stress, which can manifest in a variety of outcomes for the brain as well as subsequent behavior. Chronic Social Defeat Stress (CSDS) in mice has been widely used to model individual variation following a social stressor. Following a course of repeated intermittent psychological and physical stress, mice diverge into separate populations of social reactivity: resilient (socially interactive) and susceptible (socially avoidant) animals. A rich body of work reveals distinct neurobiological and behavioral consequences of this experience that map onto the resilient and susceptible groups. However, the range of factors that emerge over the course of defeat have not been fully described. Therefore, in the current study, we focused on characterizing behavioral, physiological, and neuroendocrine profiles of mice in three separate phases: before, during, and following CSDS. We found that following CSDS, traditional read-outs of anxiety-like and depression-like behaviors do not map on to the resilient and susceptible groups. By contrast, behavioral coping strategies used during the initial social stress encounter better predict which mice will eventually become resilient or susceptible. In particular, mice that will emerge as susceptible display greater escape behavior on Day 1 of social defeat than those that will emerge as resilient, indicating early differences in coping mechanisms used between the two groups. We further show that the social avoidance phenotype in susceptible mice is specific to the aggressor strain and does not generalize to conspecifics or other strains, indicating that there may be features of threat discrimination that are specific to the susceptible mice. Our findings suggest that there are costs and benefits to both the resilient and susceptible outcomes, reflected in their ability to cope and adapt to the social stressor.


2021 ◽  
Author(s):  
Xuan Wang ◽  
Yan Mao ◽  
Jing Jing Xiong ◽  
Wu He

Abstract The level of spatial knowledge integrity of a population is crucial for fire escape behavior. The use of appropriate interventions for people with different levels of spatial knowledge can effectively improve evacuation efficiency. However, different emergency situations also have different effects on evacuation behavior. In this paper, we combine spatial knowledge integrity, intervention behavior and emergency situations in a fire evacuation study. To complete this study, 128 participants were recruited using VR technology, classified into spatial knowledge completeness, and studied crowd evacuation through different intervention behaviors in different simulated emergency scenarios. The results of the study showed that participants with complete spatial knowledge had shorter evacuation distances and times. Secondly, leader interventions guided evacuation better for participants with incomplete spatial knowledge in low-hazard emergencies, while range interventions were better for participants with complete spatial knowledge. Thirdly, in high-risk emergencies, leader intervention was better than range intervention for evacuation, regardless of spatial knowledge completeness. Fourth, the interaction between spatial knowledge completeness and intervention behavior was significant, positively influencing the evacuation time and distance of participants.


2021 ◽  
Author(s):  
Ryan B Lunn ◽  
Brad Blackwell ◽  
Travis DeVault ◽  
Esteban Fernandez-Juricic

Animals seem to rely on antipredator behavior to avoid vehicle collisions. There is an extensive body of antipredator behavior theory that have been used to predict the distance/time animals should escape from predators. These models have also been used to guide empirical research on escape behavior from vehicles. However, little is known as to whether antipredator behavior models are appropriate to apply to an approaching high-speed vehicle. We addressed this gap by (a) providing an overview of the main hypothesis and predictions of different antipredator behavior models via a literature review, (b) exploring whether these models can generate quantitative predictions on escape distance when parameterized with empirical data from the literature, and (c) evaluating their sensitivity to vehicle approach speed via a simulation approach where we assessed model performance based on changes in effect size with variations in the slope of the flight initiation distance (FID) vs. approach speed relationship. We used literature on birds for goals (b) and (c). We considered the following eight models: the economic escape model, Blumstein's economic escape model, the optimal escape model, the perceptual limit hypothesis, the visual cue model, the flush early and avoid the rush (FEAR) hypothesis, the looming stimulus hypothesis, and the Bayesian model of escape behavior. We were able to generate quantitative predictions about escape distances with the last five models. However, we were only able to assess sensitivity to vehicle approach speed for the last three models. The FEAR hypothesis is most sensitive to high-speed vehicles when the species follows the spatial (FID remains constant as speed increases) and the temporal margin of safety (FID increases with an increase in speed) rules of escape. The looming stimulus effect hypothesis reached small to intermediate levels of sensitivity to high-speed vehicles when a species follows the delayed margin of safety (FID decreases with an increase in speed). The Bayesian optimal escape model reached intermediate levels of sensitivity to approach speed across all escape rules (spatial, temporal, delayed margins of safety) but only for larger (> 1 kg) species, but was not sensitive to speed for smaller species. Overall, no single antipredator behavior model could characterize all different types of escape responses relative to vehicle approach speed but some models showed some levels of sensitivity for certain rules of escape. We derive some applied applications of our finding by suggesting the estimation of critical vehicle approach speeds for managing populations that are especially susceptible to road mortality. Overall, we recommend that new escape behavior models specifically tailored to high-speeds vehicles should be developed to better predict quantitatively the responses of animals to an increase in the frequency of cars, airplanes, drones, etc. they will be facing in the next decade.


2021 ◽  
Author(s):  
Moisés Henrique Mastella ◽  
Isabel Roggia ◽  
Bárbara Osmarin Turra ◽  
Cibele Ferreira Teixeira ◽  
Charles Elias Assmann ◽  
...  

Abstract Background: The inflammatory theory of depression has been tested from epidemiological and experimental investigations. Some studies have suggested that mitochondrial dysfunction superoxide imbalance could increase the susceptibility to chronic stressful events, contributing to the establishment of chronic inflammation and the development of mood disorders. If this premise is true, mitochondrial superoxide imbalance induced by some molecules, such as Rotenone could be evolutionary conservated causing behavioral, immune, and neurological alterations in animals with the primitive central nervous system. Objective: To test this hypothesis, we analyzed some behavioral, immune, and histological markers in Eisenia fetida earthworms chronically exposed to Rotenone, that causes mitochondrial impairment for 14 days. Methods: earthworms were put in an artificial soil containing 30 nM of Rotenone distributed into a plastic cup that allowed the earthworms to leave and return freely into the ground. Since these organisms prefer to be buried in the ground, the model predicted that the earthworm would necessarily have to return to the Rotenone-contaminated medium creating a stressful condition. The effect on survival behavior, in the immune and histological body wall and ventral nervous ganglia (VNG) structures were evaluated, as well gene expression related to inflammation, mitochondrial and neuromuscular changes. Results: Rotenone-induced loss of earthworm escape behavior triggered by boric acid presence; it caused immune alterations indicatives of chronic inflammatory states. Some histological changes in the body wall and VNG indicated a possible earthworm reaction aimed at protection against Rotenone. Overexpression of the nicotinic acetylcholine receptor gene (nAChRs α5) in neural tissues could also help earthworms to reduce the degenerative impact of Rotenone on dopaminergic neurons. Conclusion: The data suggest that mitochondrial dysfunction could be an evolutionarily conserved element in inducing inflammatory and behavioral changes related to exposure to chronic stress.


2021 ◽  
Author(s):  
Bibi Nusreen Imambocus ◽  
Fangmin Zhou ◽  
Andrey Formozov ◽  
Annika Wittich ◽  
Federico M. Tenedini ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3064
Author(s):  
Sebastian Schneider ◽  
Sarah Goettlich ◽  
Charlette Diercks ◽  
Paul Wilhelm Dierkes

Animals living in human care for several generations face the risk of losing natural behaviors, which can lead to reduced animal welfare. The goal of this study is to demonstrate that meerkats (Suricata suricatta) living in zoos can assess potential danger and respond naturally based on acoustic signals only. This includes that the graded information of urgency in alarm calls as well as a response to those alarm calls is retained in captivity. To test the response to acoustic signals with different threat potential, meerkats were played calls of various animals differing in size and threat (e.g., robin, raven, buzzard, jackal) while their behavior was observed. The emitted alarm calls were recorded and examined for their graded structure on the one hand and played back to them on the other hand by means of a playback experiment to see whether the animals react to their own alarm calls even in the absence of danger. A fuzzy clustering algorithm was used to analyze and classify the alarm calls. Subsequently, the features that best described the graded structure were isolated using the LASSO algorithm and compared to features already known from wild meerkats. The results show that the graded structure is maintained in captivity and can be described by features such as noise and duration. The animals respond to new threats and can distinguish animal calls that are dangerous to them from those that are not, indicating the preservation of natural cooperative behavior. In addition, the playback experiments show that the meerkats respond to their own alarm calls with vigilance and escape behavior. The findings can be used to draw conclusions about the intensity of alertness in captive meerkats and to adapt husbandry conditions to appropriate welfare.


Sign in / Sign up

Export Citation Format

Share Document