scholarly journals Drosophila melanogaster foragingregulates a nociceptive-like escape behavior through a developmentally plastic sensory circuit

2019 ◽  
Vol 117 (38) ◽  
pp. 23286-23291 ◽  
Author(s):  
Jeffrey S. Dason ◽  
Amanda Cheung ◽  
Ina Anreiter ◽  
Vanessa A. Montemurri ◽  
Aaron M. Allen ◽  
...  

Painful or threatening experiences trigger escape responses that are guided by nociceptive neuronal circuitry. Although some components of this circuitry are known and conserved across animals, how this circuitry is regulated at the genetic and developmental levels is mostly unknown. To escape noxious stimuli, such as parasitoid wasp attacks,Drosophila melanogasterlarvae generate a curling and rolling response. Rover and sitter allelic variants of theDrosophila foraging(for) gene differ in parasitoid wasp susceptibility, suggesting a link betweenforand nociception. By optogenetically activating cells associated with each offor’s promoters (pr1–pr4), we show that pr1 cells regulate larval escape behavior. In accordance with rover and sitter differences in parasitoid wasp susceptibility, we found that rovers have higher pr1 expression and increased sensitivity to nociception relative to sitters. Thefornull mutants display impaired responses to thermal nociception, which are rescued by restoringforexpression in pr1 cells. Conversely, knockdown offorin pr1 cells phenocopies thefornull mutant. To gain insight into the circuitry underlying this response, we used an intersectional approach and activity-dependent GFP reconstitution across synaptic partners (GRASP) to show that pr1 cells in the ventral nerve cord (VNC) are required for the nociceptive response, and that multidendritic sensory nociceptive neurons synapse onto pr1 neurons in the VNC. Finally, we show that activation of the pr1 circuit during development suppresses the escape response. Our data demonstrate a role offorin larval nociceptive behavior. This function is specific toforpr1 neurons in the VNC, guiding a developmentally plastic escape response circuit.

1998 ◽  
Vol 201 (22) ◽  
pp. 3041-3055 ◽  
Author(s):  
MW Westneat ◽  
ME Hale ◽  
MJ Mchenry ◽  
JH Long

The fast-start escape response is a rapid, powerful body motion used to generate high accelerations of the body in virtually all fishes. Although the neurobiology and behavior of the fast-start are often studied, the patterns of muscle activity and muscle force production during escape are less well understood. We studied the fast-starts of two basal actinopterygian fishes (Amia calva and Polypterus palmas) to investigate the functional morphology of the fast-start and the role of intramuscular pressure (IMP) in escape behavior. Our goals were to determine whether IMP increases during fast starts, to look for associations between muscle activity and elevated IMP, and to determine the functional role of IMP in the mechanics of the escape response. We simultaneously recorded the kinematics, muscle activity patterns and IMP of four A. calva and three P. palmas during the escape response. Both species generated high IMPs of up to 90 kPa (nearly 1 atmosphere) above ambient during the fast-start. The two species showed similar pressure magnitudes but had significantly different motor patterns and escape performance. Stage 1 of the fast-start was generated by simultaneous contraction of locomotor muscle on both sides of the body, although electromyogram amplitudes on the contralateral (convex) side of the fish were significantly lower than on the ipsilateral (concave) side. Simultaneous recordings of IMP, escape motion and muscle activity suggest that pressure change is caused by the contraction and radial swelling of cone-shaped myomeres. We develop a model of IMP production that incorporates myomere geometry, the concept of constant-volume muscular hydrostats, the relationship between fiber angle and muscle force, and the forces that muscle fibers produce. The timing profile of pressure change, behavior and muscle action indicates that elevated muscle pressure is a mechanism of stiffening the body and functions in force transmission during the escape response.


2020 ◽  
Vol 9 (1) ◽  
pp. 31
Author(s):  
Hwa-Jin Lee ◽  
Shin-Hae Lee ◽  
Ji-Hyeon Lee ◽  
Yongjoong Kim ◽  
Ki Moon Seong ◽  
...  

Ionizing radiation induces biological/physiological changes and affects commensal microbes, but few studies have examined the relationship between the physiological changes induced by irradiation and commensal microbes. This study investigated the role of commensal microbes in the γ-ray irradiation-induced physiological changes in Drosophila melanogaster. The bacterial load was increased in 5 Gy irradiated flies, but irradiation decreased the number of operational taxonomic units. The mean lifespan of conventional flies showed no significant change by irradiation, whereas that of axenic flies was negatively correlated with the radiation dose. γ-Ray irradiation did not change the average number of eggs in both conventional and axenic flies. Locomotion of conventional flies was decreased after 5 Gy radiation exposure, whereas no significant change in locomotion activity was detected in axenic flies after irradiation. γ-Ray irradiation increased the generation of reactive oxygen species in both conventional and axenic flies, but the increase was higher in axenic flies. Similarly, the amounts of mitochondria were increased in irradiated axenic flies but not in conventional flies. These results suggest that axenic flies are more sensitive in their mitochondrial responses to radiation than conventional flies, and increased sensitivity leads to a reduced lifespan and other physiological changes in axenic flies.


Author(s):  
Yesi Mutia Basri ◽  
Rosliana Rosliana

This research aim to examine the influence of personal background, political background, and council budget knowledge towards the role of DPRD on region financial control. This research is motivated by the fact that individual background will effect to individual behavior on political activity. Dependent variables in this research are personal background, political background, and council budges knowledge towards the role of DPRD on region financial control Independent variables are the role of DPRD on region financial control in planning, implementing, and responsibility steps. The data in this research consist of primary data that taken from questionnaires distributed directly to respondents. The collected are from 34 Respondents that members of DPRD at Pekanbaru. Hypothesis of this research are examine by using Multivariate Analysis of Variances (MANOVA). The result of this research HI personal background political background and budget knowledge have significant influence toward the role of DPRD on region financial control in planning steps.H2 personal background, politico I background and budget knowledge have no significant influence toward the role of DPRD on region financial control in Implementing steps. H3 personal background political background and budget knowledge have no significant influence toward the role of DPRD on region financial control in Controlling steps.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


Genetics ◽  
1978 ◽  
Vol 89 (2) ◽  
pp. 355-370 ◽  
Author(s):  
Allen Shearn ◽  
Grafton Hersperger ◽  
Evelyn Hersperger ◽  
Ellen Steward Pentz ◽  
Paul Denker

ABSTRACT The phenotypes of five different lethal mutants of Drosophila melanogaster that have small imaginal discs were analyzed in detail. From these results, we inferred whether or not the observed imaginal disc phenotype resulted exclusively from a primary imaginal disc defect in each mutant. To examine the validity of these inferences, we employed a multiple-allele method. Lethal alleles of the five third-chromosome mutations were identified by screening EMS-treated chromosomes for those which fail to complement with a chromosome containing all five reference mutations. Twenty-four mutants were isolated from 13,197 treated chromosomes. Each of the 24 was then tested for complementation with each of the five reference mutants. There was no significant difference in the mutation frequencies at these five loci. The stage of lethality and the imaginal disc morphology of each mutant allele were compared to those of its reference allele in order to examine the range of defects to be found among lethal alleles of each locus. In addition, hybrids of the alleles were examined for intracistronic complementation. For two of the five loci, we detected no significant phenotypic variation among lethal alleles. We infer that each of the mutant alleles at these two loci cause expression of the null activity phenotype. However, for the three other loci, we did detect significant phenotypic variation among lethal alleles. In fact, one of the mutant alleles at each of these three loci causes no detectable imaginal disc defect. This demonstrates that attempting to assess the developmental role of a gene by studying a single mutant allele may lead to erroneous conclusions. As a byproduct of the mutagenesis procedure, we have isolated two dominant, cold-sensitive mutants.


2010 ◽  
Vol 426 (3) ◽  
pp. 355-364 ◽  
Author(s):  
Jofre Ferrer-Dalmau ◽  
Asier González ◽  
Maria Platara ◽  
Clara Navarrete ◽  
José L. Martínez ◽  
...  

Maintenance of cation homoeostasis is a key process for any living organism. Specific mutations in Glc7, the essential catalytic subunit of yeast protein phosphatase 1, result in salt and alkaline pH sensitivity, suggesting a role for this protein in cation homoeostasis. We screened a collection of Glc7 regulatory subunit mutants for altered tolerance to diverse cations (sodium, lithium and calcium) and alkaline pH. Among 18 candidates, only deletion of REF2 (RNA end formation 2) yielded increased sensitivity to these conditions, as well as to diverse organic toxic cations. The Ref2F374A mutation, which renders it unable to bind Glc7, did not rescue the salt-related phenotypes of the ref2 strain, suggesting that Ref2 function in cation homoeostasis is mediated by Glc7. The ref2 deletion mutant displays a marked decrease in lithium efflux, which can be explained by the inability of these cells to fully induce the Na+-ATPase ENA1 gene. The effect of lack of Ref2 is additive to that of blockage of the calcineurin pathway and might disrupt multiple mechanisms controlling ENA1 expression. ref2 cells display a striking defect in vacuolar morphogenesis, which probably accounts for the increased calcium levels observed under standard growth conditions and the strong calcium sensitivity of this mutant. Remarkably, the evidence collected indicates that the role of Ref2 in cation homoeostasis may be unrelated to its previously identified function in the formation of mRNA via the APT (for associated with Pta1) complex.


2015 ◽  
Vol 13 (5) ◽  
pp. 318-326 ◽  
Author(s):  
Rachel E. Miller ◽  
Phuong B. Tran ◽  
Alia M Obeidat ◽  
Padmanabhan Raghu ◽  
Shingo Ishihara ◽  
...  

Author(s):  
Robert C. Eaton ◽  
Randolf Didomenico
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document