escape response
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 55)

H-INDEX

36
(FIVE YEARS 5)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Wang ◽  
Yue Gong ◽  
Shenming Huang ◽  
Xuechao Xing ◽  
Ziyu Lv ◽  
...  

AbstractThe lobula giant movement detector (LGMD) is the movement-sensitive, wide-field visual neuron positioned in the third visual neuropile of lobula. LGMD neuron can anticipate collision and trigger avoidance efficiently owing to the earlier occurring firing peak before collision. Vision chips inspired by the LGMD have been successfully implemented in very-large-scale-integration (VLSI) system. However, transistor-based chips and single devices to simulate LGMD neurons make them bulky, energy-inefficient and complicated. The devices with relatively compact structure and simple operation mode to mimic the escape response of LGMD neuron have not been realized yet. Here, the artificial LGMD visual neuron is implemented using light-mediated threshold switching memristor. The non-monotonic response to light flow field originated from the formation and break of Ag conductive filaments is analogue to the escape response of LGMD neuron. Furthermore, robot navigation with obstacle avoidance capability and biomimetic compound eyes with wide field-of-view (FoV) detection capability are demonstrated.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257774
Author(s):  
Abdullah Alsrhani ◽  
Revathi Raman ◽  
Pudur Jagadeeswaran

Previously we have shown that trypsin, a protein typically involved in digestion, is released from gills of both fresh and saltwater fishes into surrounding water under stress or injury. We have also shown that each species produces trypsin with different specific activities. In this report, using zebrafish as a model, we identified that trypsin induces an aversive response in zebrafish larvae and adult zebrafish. Since Protease-Activated Receptor 2 (PAR2) responds to trypsin, we tested whether the aversive response is dependent on the activation of PAR2 located on the zebrafish skin cells. Zebrafish larvae treated separately with neomycin and zinc sulfate also showed aversive response indicating neuromast, and olfactory cells are not involved in this aversion. Cultured keratinocytes from zebrafish showed a response to trypsin. Zebrafish larvae subjected to knockdown of par2a also exhibited reduced escape response. Similarly, par2a-deficient mutant larvae displayed no response to trypsin. Since it has been shown that stress activates PAR2 and sends signals to the brain as shown by the increased c-fos expression, we tested c-fos expression in adult zebrafish brains after trypsin treatment of adults and found enhanced c-fos expression by qRT-PCR. Taken together, our results show that the trypsin activates PAR2 on keratinocytes signaling the brain, and this pathway of trypsin-induced escape response will provide a unique communication mechanism in zebrafish. Furthermore, since PAR2 activation also occurs in pain/pruritus sensing, this model might be useful in elucidating components of signaling pathways in pain/pruritus.


2021 ◽  
Author(s):  
Jonathan B. Lynch ◽  
Nicholas James ◽  
Margaret McFall-Ngai ◽  
Edward G. Ruby ◽  
Sangwoo Shin ◽  
...  

Symbiotic bacteria often navigate complex environments before colonizing privileged sites in their host organism. Chemical gradients are known to facilitate directional taxis of these bacteria, guiding them towards their eventual destination. However, less is known about the role of physical features in shaping the path the bacteria take and defining how they traverse a given space. The flagellated marine bacterium Vibrio fischeri, which forms a binary symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, must navigate tight physical confinement, squeezing through a bottleneck constricting to ~2 μm in width on the way to its eventual home. Using microfluidic in vitro experiments, we discovered that V. fischeri cells alter their behavior upon entry into confined space, straightening their swimming paths and promoting escape from confinement. Using a computational model, we attributed this escape response to two factors: reduced directional fluctuation and a refractory period between reversals. Additional experiments in asymmetric capillary tubes confirmed that V. fischeri quickly escape from tapered ends, even when drawn into the ends by chemoattraction. This avoidance was apparent down to a limit of confinement approaching the diameter of the cell itself, resulting in a balance between chemoattraction and evasion of physical confinement. Our findings demonstrate that non-trivial distributions of swimming bacteria can emerge from simple physical gradients in the level of confinement. Tight spaces may serve as an additional, crucial cue for bacteria while they navigate complex environments to enter specific habitats.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009329
Author(s):  
Erik Saberski ◽  
Antonia K. Bock ◽  
Rachel Goodridge ◽  
Vitul Agarwal ◽  
Tom Lorimer ◽  
...  

Behavioral phenotyping of model organisms has played an important role in unravelling the complexities of animal behavior. Techniques for classifying behavior often rely on easily identified changes in posture and motion. However, such approaches are likely to miss complex behaviors that cannot be readily distinguished by eye (e.g., behaviors produced by high dimensional dynamics). To explore this issue, we focus on the model organism Caenorhabditis elegans, where behaviors have been extensively recorded and classified. Using a dynamical systems lens, we identify high dimensional, nonlinear causal relationships between four basic shapes that describe worm motion (eigenmodes, also called “eigenworms”). We find relationships between all pairs of eigenmodes, but the timescales of the interactions vary between pairs and across individuals. Using these varying timescales, we create “interaction profiles” to represent an individual’s behavioral dynamics. As desired, these profiles are able to distinguish well-known behavioral states: i.e., the profiles for foraging individuals are distinct from those of individuals exhibiting an escape response. More importantly, we find that interaction profiles can distinguish high dimensional behaviors among divergent mutant strains that were previously classified as phenotypically similar. Specifically, we find it is able to detect phenotypic behavioral differences not previously identified in strains related to dysfunction of hermaphrodite-specific neurons.


2021 ◽  
Author(s):  
Hibiki Kimura ◽  
Tilo Pfalzgraff ◽  
Marie Levet ◽  
Yuuki Kawabata ◽  
John F Steffensen ◽  
...  

Fish perform rapid escape responses to avoid sudden predatory attacks. During escape responses, fish bend their bodies into a C-shape and quickly turn away from the predator and accelerate. The escape trajectory is determined by the initial turn (Stage 1) and a contralateral bend (Stage 2). Previous studies have used a single threat or model predator as a stimulus. In nature, however, multiple predators may attack from different directions simultaneously or in close succession. It is unknown whether fish are able to change the course of their escape response when startled by multiple stimuli at various time intervals. Pacific staghorn sculpin (Leptocottus armatus) were startled with a left and right visual stimulus in close succession. By varying the timing of the second stimulus, we were able to determine when and how a second stimulus could affect the escape response direction. Four treatments were used: a single visual stimulus (control); or two stimuli coming from opposite sides separated by a 0 ms (simultaneous treatment); a 33 ms; or a 83 ms time interval. The 33 ms and 83 ms time intervals were chosen to occur shortly before and after a predicted 60 ms visual escape latency (i.e. during Stage 1). The 0 ms and 33 ms treatments influenced both the escape trajectory and the Stage 1 turning angle, compared to a single stimulation, whereas the 83 ms treatment had no effect on the escape response. We conclude that Pacific staghorn sculpin can modulate their escape response only between stimulation and the onset of the response, but that escape responses are ballistic after the body motion has started.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251053
Author(s):  
Tom Lorimer ◽  
Rachel Goodridge ◽  
Antonia K. Bock ◽  
Vitul Agarwal ◽  
Erik Saberski ◽  
...  

Automated analysis of video can now generate extensive time series of pose and motion in freely-moving organisms. This requires new quantitative tools to characterise behavioural dynamics. For the model roundworm Caenorhabditis elegans, body pose can be accurately quantified from video as coordinates in a single low-dimensional space. We focus on this well-established case as an illustrative example and propose a method to reveal subtle variations in behaviour at high time resolution. Our data-driven method, based on empirical dynamic modeling, quantifies behavioural change as prediction error with respect to a time-delay-embedded ‘attractor’ of behavioural dynamics. Because this attractor is constructed from a user-specified reference data set, the approach can be tailored to specific behaviours of interest at the individual or group level. We validate the approach by detecting small changes in the movement dynamics of C. elegans at the initiation and completion of delta turns. We then examine an escape response initiated by an aversive stimulus and find that the method can track return to baseline behaviour in individual worms and reveal variations in the escape response between worms. We suggest that this general approach—defining dynamic behaviours using reference attractors and quantifying dynamic changes using prediction error—may be of broad interest and relevance to behavioural researchers working with video-derived time series.


2021 ◽  
Vol 15 ◽  
Author(s):  
Stephen A. Orr ◽  
Sungwoo Ahn ◽  
Choongseok Park ◽  
Thomas H. Miller ◽  
Miki Kassai ◽  
...  

Social status-dependent modulation of neural circuits has been investigated extensively in vertebrate and invertebrate systems. However, the effects of social status on neuromodulatory systems that drive motor activity are poorly understood. Zebrafish form a stable social relationship that consists of socially dominant and subordinate animals. The locomotor behavior patterns differ according to their social ranks. The sensitivity of the Mauthner startle escape response in subordinates increases compared to dominants while dominants increase their swimming frequency compared to subordinates. Here, we investigated the role of the endocannabinoid system (ECS) in mediating these differences in motor activities. We show that brain gene expression of key ECS protein pathways are socially regulated. Diacylglycerol lipase (DAGL) expression significantly increased in dominants and significantly decreased in subordinates relative to controls. Moreover, brain gene expression of the cannabinoid 1 receptor (CB1R) was significantly increased in subordinates relative to controls. Secondly, increasing ECS activity with JZL184 reversed swimming activity patterns in dominant and subordinate animals. JZL184 did not affect the sensitivity of the startle escape response in dominants while it was significantly reduced in subordinates. Thirdly, blockage of CB1R function with AM-251 had no effect on dominants startle escape response sensitivity, but startle sensitivity was significantly reduced in subordinates. Additionally, AM-251 did not affect swimming activities in either social phenotypes. Fourthly, we demonstrate that the effects of ECS modulation of the startle escape circuit is mediated via the dopaminergic system specifically via the dopamine D1 receptor. Finally, our empirical results complemented with neurocomputational modeling suggest that social status influences the ECS to regulate the balance in synaptic strength between excitatory and inhibitory inputs to control the excitability of motor behaviors. Collectively, this study provides new insights of how social factors impact nervous system function to reconfigure the synergistic interactions of neuromodulatory pathways to optimize motor output.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eliane Arez ◽  
Cecilia Mezzera ◽  
Ricardo M. Neto-Silva ◽  
Márcia M. Aranha ◽  
Sophie Dias ◽  
...  

AbstractPersuasion is a crucial component of the courtship ritual needed to overcome contact aversion. In fruit flies, it is well established that the male courtship song prompts receptivity in female flies, in part by causing sexually mature females to slow down and pause, allowing copulation. Whether the above receptivity behaviours require the suppression of contact avoidance or escape remains unknown. Here we show, through genetic manipulation of neurons we identified as required for female receptivity, that male song induces avoidance/escape responses that are suppressed in wild type flies. First, we show that silencing 70A09 neurons leads to an increase in escape, as females increase their walking speed during courtship together with an increase in jumping and a reduction in pausing. The increase in escape response is specific to courtship, as escape to a looming threat is not intensified. Activation of 70A09 neurons leads to pausing, confirming the role of these neurons in escape modulation. Finally, we show that the escape displays by the female result from the presence of a courting male and more specifically from the song produced by a courting male. Our results suggest that courtship song has a dual role, promoting both escape and pause in females and that escape is suppressed by the activity of 70A09 neurons, allowing mating to occur.


Sign in / Sign up

Export Citation Format

Share Document