On the mechanism of isomerization of ocular retinoids by the crayfish Procambarus clarkii.

1997 ◽  
Vol 200 (3) ◽  
pp. 625-631
Author(s):  
R Srivastava ◽  
T H Goldsmith

The eyes of some crustaceans store substantial amounts of retinyl esters, with most of the retinol in the 11-cis configuration. Earlier work in this laboratory suggested that in lobster and crayfish the mechanism of isomerization of retinol to the 11-cis form involves the hydrolysis of all-trans retinyl esters. Although this is the same process as that occurring in the vertebrate eye, it is different from the retinal photoisomerase reaction known in other arthropods, specifically diurnal insects (Hymenoptera and probably Diptera). Using homogenates of crayfish, we have tested this proposed mechanism by inhibiting retinyl ester synthetase activity in the presence of exogenous all-trans retinol. Inhibition of lecithin:retinol acyl transferase with 5 mumol l-1 retinyl bromoacetate or 2 mmol l-1 phenylmethylsulfonyl fluoride blocks the formation of both all-trans and 11-cis retinyl esters as well as 11-cis retinol, as shown by direct assay and by the decrease in counts derived from tritiated all-trans retinol. The similarity of this isomerization to the mechanism in vertebrate pigment epithelium is thus an interesting example of convergent evolution in the biochemistry of visual pigments, in which the pigments themselves (the opsins) are largely conserved across phyla.

Author(s):  
B. J. Panessa-Warren ◽  
J. B. Warren ◽  
H. W. Kraner

Our previous studies have demonstrated that abnormally high amounts of calcium (Ca) and zinc (Zn) can be accumulated in human retina-choroid under pathological conditions and that barium (Ba), which was not detected in the eyes of healthy individuals, is deposited in the retina pigment epithelium (RPE), and to a lesser extent in the sensory retina and iris. In an attempt to understand how these cations can be accumulated in the vertebrate eye, a morphological and microanalytical study of the uptake and loss of specific cations (K, Ca,Ba,Zn) was undertaken with incubated Rana catesbiana isolated retina and RPE preparations. Large frogs (650-800 gms) were dark adapted, guillotined and their eyes enucleated in deep ruby light. The eyes were hemisected behind the ora serrata and the anterior portion of the eye removed. The eyecup was bisected along the plane of the optic disc and the two segments of retina peeled away from the RPE and incubated.


2019 ◽  
Vol 26 (2) ◽  
pp. 185-196 ◽  
Author(s):  
Marcos J. Cardozo ◽  
María Almuedo-Castillo ◽  
Paola Bovolenta

The primordium of the vertebrate eye is composed of a pseudostratified and apparently homogeneous neuroepithelium, which folds inward to generate a bilayered optic cup. During these early morphogenetic events, the optic vesicle is patterned along three different axes—proximo-distal, dorso-ventral, and naso-temporal—and three major domains: the neural retina, the retinal pigment epithelium (RPE), and the optic stalk. These fundamental steps that enable the subsequent development of a functional eye, entail the precise coordination among genetic programs. These programs are driven by the interplay of signaling pathways and transcription factors, which progressively dictate how each tissue should evolve. Here, we discuss the contribution of the Hh, Wnt, FGF, and BMP signaling pathways to the early patterning of the retina. Comparative studies in different vertebrate species have shown that their morphogenetic activity is repetitively used to orchestrate the progressive specification of the eye with evolutionary conserved mechanisms that have been adapted to match the specific need of a given species.


2017 ◽  
Vol 93 (3) ◽  
pp. 844-848 ◽  
Author(s):  
Colleen Sheridan ◽  
Nicholas P. Boyer ◽  
Rosalie K. Crouch ◽  
Yiannis Koutalos

Biochemistry ◽  
1987 ◽  
Vol 26 (24) ◽  
pp. 7938-7945 ◽  
Author(s):  
Brian S. Fulton ◽  
Robert R. Rando

1974 ◽  
Vol 52 (11) ◽  
pp. 1053-1066 ◽  
Author(s):  
Sailen Mookerjea ◽  
James W. M. Yung

Addition of lysolecithin caused very marked activation of UDP-galactose:glycoprotein galactosyltransferase in rat liver microsomes and in Golgi-rich membranes. Lysolecithin activated galactosyltransferase when the enzyme was assayed both with endogenous acceptor and with exogenous proteins or monosaccharides as acceptors. Lactose synthetase activity in presence of α-lactalbumin was also stimulated by lysolecithin. Lecithin, lysophosphatidylethanolamine, lysophosphatidic acid, and glycerophosphorylcholine did not activate the enzyme, suggesting that both fatty acyl and phosphorylcholine groups of the lysolecithin molecule are required for the observed activation. The degree of activation was about the same when myristoyl-, palmitoyl-, oleoyl-, or stearoyllysolecithin were tested. The activation by lysolecithin was observed well within the physiological concentration of the lipid in the liver cell. Saturating amounts of Triton masked the effect of lysolecithin.Brief preincubation with phospholipase A activated the enzyme and generated lysolecithin in the membranes. Triton and lysolecithin activated the enzyme without any lag time, whereas phospholipase A activation was dependent on preincubation and also on an alkaline pH favorable for the hydrolysis of phospholipid. EDTA blocked the activation effect of phospholipase A but had no effect on activation by lysolecithin. Albumin and cholesterol opposed the effects of lysolecithin and phospholipase A on the enzyme. Two successive incubations of the microsomes with lysolecithin caused considerable release of the enzyme into the soluble fraction. The role of lysolecithin in the activation of the enzyme is probably related to the solubilization of the membrane and consequent enhanced interaction of the enzyme with substrate. Lysolecithin also activated N-acetylglucosaminyl- and sialyltransferase activities in microsomes. A possible role of lysolecithin is indicated in the regulation of glycosylation reactions in mammalian system.


2019 ◽  
Author(s):  
Martijn R. Molenaar ◽  
Tsjerk A. Wassenaar ◽  
Kamlesh K. Yadav ◽  
Alexandre Toulmay ◽  
Muriel C. Mari ◽  
...  

AbstractLipid droplets are unique and nearly ubiquitous organelles that store neutral lipids in a hydrophobic core, surrounded by a monolayer of phospholipids. The primary neutral lipids are triacylglycerols and steryl esters. It is not known whether other classes of neutral lipids can form lipid droplets by themselves. Here we show that production of retinyl esters by lecithin:retinol acyl transferase (LRAT) in yeast cells, incapable of producing triacylglycerols and steryl esters, causes the formation of lipid droplets. By electron microscopy, these lipid droplets are morphologically indistinguishable from those in wild-type cells. In silico and in vitro experiments confirmed the propensity of retinyl esters to segregate from membranes and to form lipid droplets. The hydrophobic N-terminus of LRAT displays preferential interactions with retinyl esters in membranes and promotes the formation of large retinyl ester-containing lipid droplets in mammalian cells. Our combined data indicate that the molecular design of LRAT is optimally suited to allow the formation of characteristic large lipid droplets in retinyl ester-storing cells.


1973 ◽  
Vol 30 (02) ◽  
pp. 248-254 ◽  
Author(s):  
Roger L. Lundblad

SummaryThe ability of purified bovine thrombin to catalyze the hydrolysis of p-nitrophenyl acetate and p-nitrophenyl butyrate has been studied. The butyrate derivative appears to be hydrolyzed more rapidly than the acetate derivative. An examination of the time course of hydrolysis of these compounds by thrombin shows an initial ‘‘burst” reaction followed by a slower ‘‘steady-state” reaction. The hydrolysis of p-nitrophenyl acylates by thrombin is inhibited by the presence of benzamidine as well as by prior reaction of thrombin with phenylmethylsulfonyl fluoride. It is suggested that bovine thrombin catalyzes the hydrolysis of p-nitrophenyl acylates and that the reaction proceeds via the formation of an acyl-enzyme intermediate.


Sign in / Sign up

Export Citation Format

Share Document