Molecular cloning and hormonal control in the ovary of connexin 31.5 mRNA and correlation with the appearance of oocyte maturational competence in red seabream

2000 ◽  
Vol 203 (21) ◽  
pp. 3299-3306
Author(s):  
C.Y. Choi ◽  
F. Takashima

Gap junctions are aggregates of intercellular channels, composed of the protein connexin (Cx), between adjacent cells. This study examined whether, in the ovary of the red seabream Pagrus major, the connexin gene essential for the production of RNA and protein during the acquisition of oocyte maturational competence is active. Mixed primers for this reaction were designed on the basis of the high sequence homology of selected regions of known connexin genes. Polymerase-chain-reaction-amplified cDNA fragments generated by 3′ and 5′ rapid amplication of cDNA ends were combined to generate full-length cDNA sequences. The resulting 2400 base pair cDNA had an open reading frame encoding a polypeptide containing 275 amino acid residues (31493 Da; Cx31.5). Hydropathicity analysis of the predicted amino acid sequence indicated that red seabream Cx31.5 has four major hydrophobic regions and four major hydrophilic regions indicative of a topology similar to that of known connexins. Typical connexin consensus sequences were also observed in the first and second extracellular loops. During the acquisition of oocyte maturational competence, red seabream Cx31.5 mRNA transcription levels increased after treatment with gonadotropin-II. It is therefore proposed that expression of Cx31.5 contributes to the acquisition of oocyte maturational competence in this species.

1998 ◽  
Vol 64 (2) ◽  
pp. 549-554 ◽  
Author(s):  
Ji-Quan Liu ◽  
Saeko Ito ◽  
Tohru Dairi ◽  
Nobuya Itoh ◽  
Michihiko Kataoka ◽  
...  

ABSTRACT A low-specificity l-threonine aldolase (l-TA) gene from Pseudomonas sp. strain NCIMB 10558 was cloned and sequenced. The gene contains an open reading frame consisting of 1,041 nucleotides corresponding to 346 amino acid residues. The gene was overexpressed in Escherichia colicells, and the recombinant enzyme was purified and characterized. The enzyme, requiring pyridoxal 5′-phosphate as a coenzyme, is strictlyl specific at the α position, whereas it cannot distinguish between threo and erythro forms at the β position. In addition to threonine, the enzyme also acts on various other l-β-hydroxy-α-amino acids, includingl-β-3,4-dihydroxyphenylserine,l-β-3,4-methylenedioxyphenylserine, andl-β-phenylserine. The predicted amino acid sequence displayed less than 20% identity with those of low-specificityl-TA from Saccharomyces cerevisiae,l-allo-threonine aldolase from Aeromonas jandaei, and four relevant hypothetical proteins from other microorganisms. However, lysine 207 of low-specificity l-TA from Pseudomonas sp. strain NCIMB 10558 was found to be completely conserved in these proteins. Site-directed mutagenesis experiments showed that substitution of Lys207 with Ala or Arg resulted in a significant loss of enzyme activity, with the corresponding disappearance of the absorption maximum at 420 nm. Thus, Lys207 of thel-TA probably functions as an essential catalytic residue, forming an internal Schiff base with the pyridoxal 5′-phosphate of the enzyme to catalyze the reversible aldol reaction.


1988 ◽  
Vol 254 (3) ◽  
pp. 743-750 ◽  
Author(s):  
C G Tate ◽  
M J A Tanner

We have isolated almost full-length cDNA clones corresponding to human erythrocyte membrane sialoglycoproteins alpha (glycophorin A) and delta (glycophorin B). The predicted amino acid sequence of delta differs at two amino acid residues from the sequence determined by peptide sequencing. The sialoglycoprotein delta clone we have isolated contains an interrupting sequence within the region that gives rise to the cleaved N-terminal leader sequence for the protein and represents a product that is unlikely to be inserted into the erythrocyte membrane. Comparison of the cDNA sequences of alpha and delta shows very strong homology at the DNA level within the coding regions. The two mRNA sequences are closely related and differ by a number of clearly defined insertions and deletions.


1999 ◽  
Vol 67 (6) ◽  
pp. 2855-2861 ◽  
Author(s):  
Martin Plante ◽  
Nathalie Cadieux ◽  
Clément R. Rioux ◽  
Josée Hamel ◽  
Bernard R. Brodeur ◽  
...  

ABSTRACT A low-molecular-weight protein named NspA (neisserial surface protein A) was recently identified in the outer membrane of allNeisseria meningitidis strains tested. Antibodies directed against this protein were shown to protect mice against an experimental meningococcal infection. Hybridization experiments clearly demonstrated that the nspA gene was also present in the genomes of the 15 Neisseria gonorrhoeae strains tested. Cloning and sequencing of the nspA gene of N. gonorrhoeaeB2 revealed an open reading frame of 525 nucleotides coding for a polypeptide of 174 amino acid residues, with a calculated molecular weight of 18,316 and a pI of 10.21. Comparison of the predicted amino acid sequence of the NspA polypeptides from the gonococcal strains B2 and FA1090, together with that of the meningococcal strain 608B, revealed an identity of 93%, suggesting that the NspA protein is highly conserved among pathogenic Neisseria strains. The level of identity rose to 98% when only the two gonococcal predicted NspA polypeptides were compared. To evaluate the level of antigenic conservation of the gonococcal NspA protein, monoclonal antibodies (MAbs) were generated. Four of the seven NspA-specific MAbs described in this report recognized their corresponding epitope in 100% of the 51 N. gonorrhoeae strains tested. Radioimmunobinding assays clearly indicated that the gonococcal NspA protein is exposed at the surface of intact cells.


1985 ◽  
Vol 5 (10) ◽  
pp. 2684-2696
Author(s):  
D H Smith ◽  
D M Kegler ◽  
E B Ziff

We transiently expressed adenovirus type C E1a proteins in wild-type or mutant form from plasmid vectors which have different combinations of E1a and simian virus 40 enhancer elements and which contain the DNA replication origin of SV40 and can replicate in COS 7 cells. We measured the levels of E1a mRNA encoded by the vectors and the transition regulation properties of the protein products. Three vectors encoded equivalent levels of E1a mRNA in COS 7 cells: (i) a plasmid encoding the wt 289-amino acid E1a protein (this complemented the E1a deletion mutant dl312 for early region E2a expression under both replicative and nonreplicative conditions); (ii) a vector for the wt 243-amino acid E1a protein (this complemented dl312 weakly and only under conditions of high multiplicities of dl312); (iii) a mutant, pSVXL105, in which amino acid residues-38 through 44 of the 289-amino acid E1a protein (which includes two highly conserved residues) are replaced by 3 novel amino acids (this also complemented dl312 efficiently). A fourth vector, mutant pSVXL3 with which linker substitution shifts the reading frame to encode a truncated 70-amino acid fragment from the amino terminus of the 289-amino acid protein, was unable to complement dl312. Surprisingly, pSVXL3 overexpressed E1a mRNA approximately 30-fold in COS 7 cells in comparison with the other vectors. The pSVXL3 overexpression could be reversed by cotransfection with a wt E1a vector. We suggest that wt E1a proteins regulate the levels of their own mRNAs through the recently described transcription repression functions of the 289- and 243-amino acid E1a protein products and that pSVXL3 fails to autoregulate negatively.


1995 ◽  
Vol 15 (10) ◽  
pp. 5329-5338 ◽  
Author(s):  
K Onel ◽  
M P Thelen ◽  
D O Ferguson ◽  
R L Bennett ◽  
W K Holloman

The REC1 gene of Ustilago maydis has an uninterrupted open reading frame, predicted from the genomic sequence to encode a protein of 522 amino acid residues. Nevertheless, an intron is present, and functional activity of the gene in mitotic cells requires an RNA processing event to remove the intron. This results in a change in reading frame and production of a protein of 463 amino acid residues. The 3'-->5' exonuclease activity of proteins derived from the REC1 genomic open reading frame, the intronless open reading frame, and several mutants was investigated. The mutants included a series of deletions constructed by removing restriction fragments at the 3' end of the cloned REC1 gene and a set of mutant alleles previously isolated in screens for radiation sensitivity. All of these proteins were overproduced in Escherichia coli as N-terminal polyhistidine-tagged fusions that were subsequently purified by immobilized metal affinity chromatography and assayed for 3'-->5' exonuclease activity. The results indicated that elimination of the C-terminal third of the protein did not result in a serious reduction in 3'-->5' exonuclease activity, but deletion into the midsection caused a severe loss of activity. The biological activity of the rec1-1 allele, which encodes a truncated polypeptide with full 3'-->5' exonuclease activity, and the rec1-5 allele, which encodes a more severely truncated polypeptide with no exonuclease activity, was investigated. The two mutants were equally sensitive to the lethal effect of UV light, but the spontaneous mutation rate was elevated 10-fold over the wild-type rate in the rec1-1 mutant and 100-fold in the rec1-5 mutant. The elevated spontaneous mutation rate correlated with the ablation of exonuclease activity, but the radiation sensitivity did not. These results indicate that the C-terminal portion of the Rec1 protein is not essential for exonuclease activity but is crucial in the role of REC1 in DNA damage repair.


1991 ◽  
Vol 99 (4) ◽  
pp. 711-719
Author(s):  
K.L. O'Donnell ◽  
A.H. Osmani ◽  
S.A. Osmani ◽  
N.R. Morris

The recessive, temperature-sensitive bimA1 mutation of Aspergillus nidulans blocks nuclei in metaphase at restrictive temperature. To determine whether the bimA product is essential, integrative transformation was used to create a mutation in the bimA gene. The mutation was maintained in a heterokaryon and the phenotype of spores produced by the heterokaryon was analyzed. Molecular disruption of the wild-type bimA gene is recessive in the heterokaryon and causes a metaphase block, demonstrating that bimA is an essential gene for mitosis. bimA was cloned by DNA-mediated complementation of its mutant phenotype at restrictive temperature, and the nucleotide sequence of a full-length cDNA was determined. A single large open reading frame was identified in the cDNA sequence, which predicts a protein containing 806 amino acid residues that is related (30.4% identity) to the Schizosaccharomyces pombe nuc2+ gene product, which also is required for completion of mitosis. The sequence of the bimA gene indicates that it is a member of a family of mostly nuclear proteins that contain a degenerate 34 amino acid repeat, the TPR (tetratricopeptide repeat) gene family.


1995 ◽  
Vol 7 (5) ◽  
pp. 1209 ◽  
Author(s):  
SK Kolluri ◽  
R Kaul ◽  
K Banerjee ◽  
SK Gupta

The cDNA encoding bonnet monkey zona pellucida ZP3 from bonnet ovary has been amplified by polymerase chain reaction. The ZP3 gene has an open reading frame of 1272 nucleotides encoding a polypeptide of 424 amino acid residues which shares 93.9% overall identity with human ZP3. Bonnet ZP3 has four potential attachment sites for N-linked sugar chains which are also conserved in human ZP3. Bonnet ZP3 has 14 cysteine residues compared with 15 in human ZP3. The highest disparity between these molecules was restricted to a domain represented by amino acid residues 370-398. These results have important implications for the use of bonnet monkey as an animal model for evaluation and development of contraceptive vaccine based on ZP3 for human use.


2020 ◽  
Vol 32 (8) ◽  
pp. 792 ◽  
Author(s):  
Ruidong Zhang ◽  
Haitao Nie ◽  
Shulong Duan ◽  
Peng Yan ◽  
Ali Izaz ◽  
...  

Kisspeptin1 (Kiss1), a product of the Kiss1 gene, plays an important role in the regulation of reproduction in vertebrates by activating the Kiss1 receptor (Kiss1R) and its coexpression with gonadotrophin-releasing hormone (GnRH) in GnRH neurons. The purpose of this study was to clone the Kiss1 and Kiss1R genes found in the brain of Alligator sinensis and to explore their relationship with reproduction. The full-length cDNA of Kiss1 is 816bp, the open reading frame (ORF) is 417bp and the gene encodes a 138-amino acid precursor protein. The full-length cDNA of Kiss1R is 2348bp, the ORF is 1086bp and the gene encodes a 361-amino acid protein. Quantitative polymerase chain reaction showed that, except for Kiss1R expression in the hypothalamus, the expression of Kiss1 and Kiss1Rduring the reproductive period of A. sinensis was higher than that in the hypothalamus, pituitary gland and ovary during the hibernation period. The changes in GnRH2 mRNA in the hypothalamus were similar to those of GnRH1 and peaked during the reproductive period. This study confirms the existence of Kiss1 and Kiss1R in A. sinensis and the findings strongly suggest that Kiss1 and Kiss1R may participate in the regulation of GnRH secretion in the hypothalamus of alligators during the reproductive period. Furthermore, this is the first report of the full-length cDNA sequences of Kiss1 and Kiss1R in reptiles.


2014 ◽  
Vol 998-999 ◽  
pp. 210-213
Author(s):  
Chun Ling Zhao ◽  
Wen Jing Yu ◽  
Ji Yu Ju

cDNA of a novel protease, designated as AFEI, was cloned from digestive tract of Arenicola cristata by RACE. The cDNA of AFEIcomprised 897bp and an open reading frame that encoded polypeptides of 264 amino acid residues. AFEIshowed similarity to serine protease family and contained the conserved catalytic amino acid residues. The gene encoding the active form of AFEIwas expressed in E.coli and the purified recombinant protein could dissolve an artificial fibrin plate with plasminogen, which indicated the recombinant protein might be a plasminogen activator for thrombosis therapy.


1989 ◽  
Vol 9 (12) ◽  
pp. 5617-5622 ◽  
Author(s):  
Y Fukui ◽  
S Miyake ◽  
M Satoh ◽  
M Yamamoto

Mutations in the Schizosaccharomyces pombe ral2 gene cause a phenotype indistinguishable from that of the ras1-defective mutant. Using cloned ral2 DNA, we disrupted the chromosomal gene. The disruptants showed the same phenotype as the original ral2 isolates, i.e., they had spherical cells, had no detectable mating activity, and exhibited no response to the mating pheromone, but their vegetative growth was apparently normal. Sequence analysis of the ral2 gene suggests that it encodes a polypeptide of 611 amino acid residues whose predicted amino acid sequence shows no strong homology to any known protein. Either multiple copies or even a single copy of the ras1Val-17 allele, which is an activated form of ras1, restored rodlike cell morphology and ability to respond to the mating factor to ral2 mutants. These results suggest that the ral2 and ras1 gene products interact intimately and that the ral2 gene product is involved in activation of the ras1 protein in S. pombe.


Sign in / Sign up

Export Citation Format

Share Document