scholarly journals Genetic variation in haemoglobin is associated with evolved changes in breathing in high-altitude deer mice

Author(s):  
Catherine M. Ivy ◽  
Oliver H. Wearing ◽  
Chandrasekhar Natarajan ◽  
Rena M. Schweizer ◽  
Natalia Gutiérrez-Pinto ◽  
...  

Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and β-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb-O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland β-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulations of Hb-O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb-O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in haemoglobin may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport.

2021 ◽  
Author(s):  
Catherine M. Ivy ◽  
Oliver H. Wearing ◽  
Chandrasekhar Natarajan ◽  
Rena M. Schweizer ◽  
Natalia Gutiérrez-Pinto ◽  
...  

ABSTRACTPhysiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated the in vivo effects on respiratory physiology of genetic variants in haemoglobin (Hb) that contribute to hypoxia adaptation in high-altitude deer mice (Peromyscus maniculatus). We created F2 inter-population hybrids of highland and lowland deer mice to test the phenotypic effects of α- and β-globin variants on a mixed genetic background. High-altitude genotypes were associated with breathing phenotypes that enhance O2 uptake in hypoxia, including a deeper more effective breathing pattern and an augmented hypoxic ventilatory response. These effects could not be explained by erythrocyte Hb-O2 affinity or globin gene expression in the brainstem. Therefore, adaptive variation in haemoglobin can have unexpected effects on physiology that are distinct from the canonical function of this protein in circulatory O2 transport.


2009 ◽  
Vol 106 (34) ◽  
pp. 14450-14455 ◽  
Author(s):  
J. F. Storz ◽  
A. M. Runck ◽  
S. J. Sabatino ◽  
J. K. Kelly ◽  
N. Ferrand ◽  
...  

Author(s):  
Ainash Childebayeva ◽  
Jaclyn M Goodrich ◽  
Fabiola Leon-Velarde ◽  
Maria Rivera-Chira ◽  
Melisa Kiyamu ◽  
...  

Abstract High-altitude adaptation is a classic example of natural selection operating on the human genome. Physiological and genetic adaptations have been documented in populations with a history of living at high altitude. However, the role of epigenetic gene regulation, including DNA methylation, in high-altitude adaptation is not well understood. We performed an epigenome-wide DNA methylation association study based on whole blood from 113 Peruvian Quechua with differential lifetime exposures to high altitude (>2,500) and recruited based on a migrant study design. We identified two significant differentially methylated positions (DMPs) and 62 differentially methylated regions (DMRs) associated with high-altitude developmental and lifelong exposure statuses. DMPs and DMRs were found in genes associated with hypoxia-inducible factor pathway, red blood cell production, blood pressure, and others. DMPs and DMRs associated with fractional exhaled Nitric Oxide (FeNO) also were identified. We found a significant association between EPAS1 methylation and EPAS1 SNP genotypes, suggesting that local genetic variation influences patterns of methylation. Our findings demonstrate that DNA methylation is associated with early developmental and lifelong high-altitude exposures among Peruvian Quechua as well as altitude-adaptive phenotypes. Together these findings suggest that epigenetic mechanisms might be involved in adaptive developmental plasticity to high altitude. Moreover, we show that local genetic variation is associated with DNA methylation levels, suggesting that methylation associated SNPs could be a potential avenue for research on genetic adaptation to hypoxia in Andeans.


2017 ◽  
Vol 31 (S1) ◽  
Author(s):  
Graham R. Scott ◽  
Catherine M. Ivy ◽  
Kevin B. Tate ◽  
Jonathan P. Velotta ◽  
Rena M. Schweizer ◽  
...  

GeroScience ◽  
2021 ◽  
Author(s):  
Steve Horvath ◽  
Amin Haghani ◽  
Joseph A. Zoller ◽  
Asieh Naderi ◽  
Elham Soltanmohammadi ◽  
...  

AbstractDNA methylation-based biomarkers of aging have been developed for humans and many other mammals and could be used to assess how stress factors impact aging. Deer mice (Peromyscus) are long-living rodents that have emerged as an informative model to study aging, adaptation to extreme environments, and monogamous behavior. In the present study, we have undertaken an exhaustive, genome-wide analysis of DNA methylation in Peromyscus, spanning different species, stocks, sexes, tissues, and age cohorts. We describe DNA methylation-based estimators of age for different species of deer mice based on novel DNA methylation data generated on highly conserved mammalian CpGs measured with a custom array. The multi-tissue epigenetic clock for deer mice was trained on 3 tissues (tail, liver, and brain). Two human-Peromyscus clocks accurately measure age and relative age, respectively. We present CpGs and enriched pathways that relate to different conditions such as chronological age, high altitude, and monogamous behavior. Overall, this study provides a first step towards studying the epigenetic correlates of monogamous behavior and adaptation to high altitude in Peromyscus. The human-Peromyscus epigenetic clocks are expected to provide a significant boost to the attractiveness of Peromyscus as a biological model.


PLoS Genetics ◽  
2007 ◽  
Vol 3 (3) ◽  
pp. e45 ◽  
Author(s):  
Jay F Storz ◽  
Stephen J Sabatino ◽  
Federico G Hoffmann ◽  
Eben J Gering ◽  
Hideaki Moriyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document