scholarly journals Genetic variation in haemoglobin alters breathing in high-altitude deer mice

2021 ◽  
Author(s):  
Catherine M. Ivy ◽  
Oliver H. Wearing ◽  
Chandrasekhar Natarajan ◽  
Rena M. Schweizer ◽  
Natalia Gutiérrez-Pinto ◽  
...  

ABSTRACTPhysiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated the in vivo effects on respiratory physiology of genetic variants in haemoglobin (Hb) that contribute to hypoxia adaptation in high-altitude deer mice (Peromyscus maniculatus). We created F2 inter-population hybrids of highland and lowland deer mice to test the phenotypic effects of α- and β-globin variants on a mixed genetic background. High-altitude genotypes were associated with breathing phenotypes that enhance O2 uptake in hypoxia, including a deeper more effective breathing pattern and an augmented hypoxic ventilatory response. These effects could not be explained by erythrocyte Hb-O2 affinity or globin gene expression in the brainstem. Therefore, adaptive variation in haemoglobin can have unexpected effects on physiology that are distinct from the canonical function of this protein in circulatory O2 transport.

Author(s):  
Catherine M. Ivy ◽  
Oliver H. Wearing ◽  
Chandrasekhar Natarajan ◽  
Rena M. Schweizer ◽  
Natalia Gutiérrez-Pinto ◽  
...  

Physiological systems often have emergent properties but the effects of genetic variation on physiology are often unknown, which presents a major challenge to understanding the mechanisms of phenotypic evolution. We investigated whether genetic variants in haemoglobin (Hb) that contribute to high-altitude adaptation in deer mice (Peromyscus maniculatus) are associated with evolved changes in control of breathing. We created F2 inter-population hybrids of highland and lowland deer mice to test for phenotypic associations of α- and β-globin variants on a mixed genetic background. Hb genotype had expected effects on Hb-O2 affinity that were associated with differences in arterial O2 saturation in hypoxia. However, high-altitude genotypes were also associated with breathing phenotypes that should contribute to enhancing O2 uptake in hypoxia. Mice with highland α-globin exhibited a more effective breathing pattern, with highland homozygotes breathing deeper but less frequently across a range of inspired O2, and this difference was comparable to the evolved changes in breathing pattern in deer mouse populations native to high altitude. The ventilatory response to hypoxia was augmented in mice that were homozygous for highland β-globin. The association of globin variants with variation in breathing phenotypes could not be recapitulated by acute manipulations of Hb-O2 affinity, because treatment with efaproxiral (a synthetic drug that acutely reduces Hb-O2 affinity) had no effect on breathing in normoxia or hypoxia. Therefore, adaptive variation in haemoglobin may have unexpected effects on physiology in addition to the canonical function of this protein in circulatory O2 transport.


1985 ◽  
Vol 58 (1) ◽  
pp. 193-199 ◽  
Author(s):  
L. R. Snyder

Whereas it is widely believed that animals native to high altitude show lower O2 partial pressures at 50% hemoglobin saturation (P50) than do related animals native to low altitude, that “fact” has not been well documented. Consequently, P50 at pH 7.4, PCO2(7.4), the CO2 Bohr effect, and the buffer slope (delta log PCO2/delta pH) were determined via the mixing technique in Peromyscus maniculatus native to a range of altitudes but acclimated to 340 or 3,800 m. PCO2(7.4) and buffer slope were substantially lower at high altitude. The change in P50(7.4) between acclimation altitudes was minimal (0.8% increase at 3,800 m), because of counterbalancing changes in PCO2, 2,3-diphospho-D-glycerate concentration, and perhaps other factors. At both acclimation altitudes there was a highly significant negative correlation between P50(7.4) and native altitude. Since pH in vivo probably increases slightly at high altitude, the data on P50 corrected to pH 7.4 are probably underestimates of the difference in in vivo P50 at low vs. high altitude. Hence these results corroborate theoretical predictions that low P50 is advantageous under severe hypoxic stress.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2924-2933 ◽  
Author(s):  
Tohru Ikuta ◽  
Yuet Wai Kan ◽  
Paul S. Swerdlow ◽  
Douglas V. Faller ◽  
Susan P. Perrine

Abstract The mechanisms by which pharmacologic agents stimulate γ-globin gene expression in β-globin disorders has not been fully established at the molecular level. In studies described here, nucleated erythroblasts were isolated from patients with β-globin disorders before and with butyrate therapy, and globin biosynthesis, mRNA, and protein-DNA interactions were examined. Expression of γ-globin mRNA increased twofold to sixfold above baseline with butyrate therapy in 7 of 8 patients studied. A 15% to 50% increase in γ-globin protein synthetic levels above baseline γ globin ratios and a relative decrease in β-globin biosynthesis were observed in responsive patients. Extensive new in vivo footprints were detected in erythroblasts of responsive patients in four regions of the γ-globin gene promoter, designated butyrate-response elements gamma 1-4 (BRE-G1-4). Electrophoretic mobility shift assays using BRE-G1 sequences as a probe demonstrated that new binding of two erythroid-specific proteins and one ubiquitous protein, CP2, occurred with treatment in the responsive patients and did not occur in the nonresponder. The BRE-G1 sequence conferred butyrate inducibility in reporter gene assays. These in vivo protein-DNA interactions in human erythroblasts in which γ-globin gene expression is being altered strongly suggest that nuclear protein binding, including CP2, to the BRE-G1 region of the γ-globin gene promoter mediates butyrate activity on γ-globin gene expression. © 1998 by The American Society of Hematology.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1599-1599
Author(s):  
Ruiqiong Wu ◽  
Aurelie Desgardin ◽  
Stephen M. Jane ◽  
John M. Cunningham

Abstract Understanding the molecular mechanisms that regulate γ-globin gene expression is essential for development of new therapeutic strategies for individuals with sickle cell disease and β-thalassemia. We have previously identified a tissue- and developmentally- specific multiprotein transacting factor complex, the human stage selector protein (SSP), which facilitates the interaction of the g-globin gene promoters with the upstream locus control region enhancer in fetal erythoid cells. This complex interacts with the stage selector element (SSE) in the proximal g-globin promoter, a regulatory motif phylogenetically conserved in primate species with a distinct fetal stage of β-globin like gene expression. Given these observations, we hypothesized that a similar complex modulates γ-globin in the rhesus macaque, a non-human primate model that has been utilized to study β-globin like gene expression. We focused our efforts on NF-E4, given that a human isoform of this factor confers erythroid and fetal specificity to the SSP complex. Fetal liver erythroblasts were obtained from rhesus embryos and analyzed by reverse transcriptase(RT)-PCR analysis for NF-E4 expression. NF-E4 like transcripts were identified in day 60, 80 and 120 embryonic erythroblasts, but not other rhesus tissues, demonstrating an erythroid-specific pattern of expression. Utilizing 5′ RACE, we cloned a full length NF-E4 transcript, identifying an open reading frame encoding a 131 amino acid polypeptide. This 20kD polypeptide shares a high degree of homology with human NF-E4, especially in its carboxy-terminal domain. Like human NF-E4, GST pulldown chromatography confirmed the ability of the rhesus factor to interact directly with CP2 and ALY, the other core components of the SSP. To evaluate rNF-E4 function in vivo, we utilized retrovirally mediated gene transfer to enforce expression of this factor in K562 cells, a model of human fetal erythropoiesis. Initial co-immunoprecipitation studies confirmed the in vivo interaction of rNF-E4 with other components of the SSP. Interestingly, we observed a specific 3-fold induction of γ-globin gene expression in rNF-E4 expressing cells when compared to controls. Moreover, we demonstrated that, like enforced expression of human NF-E4, rNF-E4 induced a significant increase in ε-globin gene expression. Taken together, our results suggest a conservation of NF-E4 expression and function in species with a fetal stage of globin gene expression. Moreover, the identification of rNF-E4 provides a platform for the pre-clinical development of therapeutic agents that induce high levels of NF-E4 in adult erythroblasts.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-7-SCI-7
Author(s):  
Mitchell J. Weiss

Abstract Abstract SCI-7 Efforts to define the mechanisms of globin gene expression and transcriptional control of erythrocyte formation have provided key insights into our understanding of developmental hematopoiesis. Our group has focused on GATA-1, a zinc finger protein that was initially identified through its ability to bind a conserved cis element that regulates globin gene expression. GATA-1 is essential for erythroid development and mutations in the GATA1 gene are associated with human cytopenias and leukemia. Several general principles have emerged through studies to define the mechanisms of GATA-1 action. First, GATA-1 activates not only globin genes, but also virtually every gene that defines the erythroid phenotype. This observation sparked successful gene discovery efforts to identify new components of erythroid development and physiology. Second, GATA-1 also represses transcription through multiple mechanisms. This property may help to explain how GATA-1 regulates hematopoietic lineage commitment and also how GATA1 mutations contribute to cancer, since several directly repressed targets are proto-oncogenes. Third, GATA-1 regulates not only protein coding genes, but also microRNAs, which in turn, modulate erythropoiesis through post-transcriptional mechanisms. Fourth, GATA-1 interacts with other essential erythroid-specific and ubiquitous transcription factors. These protein interactions regulate gene expression by influencing chromatin modifications and controlling three-dimensional proximity between widely spaced DNA elements. Recently, we have combined transcriptome analysis with ChIP-chip and ChIP-seq studies to correlate in vivo occupancy of DNA by GATA-1 and other transcription factors with mRNA expression genome-wide in erythroid cells. These studies better elucidate how GATA-1 recognizes DNA, discriminates between transcriptional activation versus repression and interacts functionally with other nuclear proteins. I will review published and new aspects of our work in these areas. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 753-753 ◽  
Author(s):  
Raffaele Renella ◽  
Aleksej Perlov ◽  
Chad E Harris ◽  
Daniel E. Bauer ◽  
Jian Xu ◽  
...  

Abstract Abstract 753 Sickle cell disease (SCD) is caused by a mutation in the β-globin protein, leading to the polymerization of hemoglobin in deoxygenated conditions. The transcription factor BCL11A is a key regulator of developmental silencing of human fetal (γ-) globin, and also critical to repressing γ-globin in adult erythroid cells. A Bcl11a null mouse model carrying a transgenic YAC with a humanized β-globin locus (β-YAC) displays increased levels of fetal hemoglobin (HbF) in adult erythrocytes, and crossing these animals with a SCD murine model abolishes the SCD phenotype. BCL11A therefore constitutes a genetically validated target to induce HbF and reduce erythrocyte “sickling”, which would be predicted to ameliorate the phenotype of SCD patients. However, defective lymphoid development has been observed in Bcl11a genetic null mice, suggesting potential toxicities of BCL11A knockdown. We generated self-inactivating lentiviral vectors (LV) integrating miR-223 microRNA-based inhibitory shRNAs against BCL11A/Bcl11a. Since future clinical applications will need to balance efficacy and potential side effects, LVs were engineered to allow the comparison of effects of high level and ubiquitous versus erythroid lineage-restricted versus inducible expression of miRNA targeting BCL11A. LV backbones therefore included either a strong, viral LTR promoter/enhancer (SFFV-LV), a β-globin locus control region with the endogenous β-globin promoter (LCR-LV), or a tetracycline-inducible promoter (TET-LV). We performed assays to quantify transgenic miRNA expression and demonstrated that the BCL11A knockdown and induction of fetal globin gene output correlated with the expression of targeting miR223-based shRNA. Transduction at low MOI (=2) of murine hematopoietic stem cells (HSC) with LVs carrying the abovementioned regulatory elements leads to long-term engraftment and transgene expression in-vivo. Mice transplanted with SFFV-LV show fluorescent marking up to 70% across myeloid, lymphoid and erythroid lineages. The maximal BCL11A/Bcl11a mRNA and protein knock-down observed in primary hematopoietic cells in-vitro and in-vivo was 70%. This was confirmed in FACS-sorted bone marrow B-lymphoid (B220+) and erythroid progenitors (Terr119+/CD71+) and peripheral blood leukocytes at 4 months post-transplant. BCL11A/Bcl11a knockdown induced fetal globin gene expression depending on the vector backbone and targeting shRNA sequence employed. With SFFV-LV, we observed a 5–20 fold upregulation of fetal globin gene (γ/(ϵ+γ+β)) output in mice transplanted with HSCs containing the humanized β-YAC transgene. With TET-LV, the induction was dose-dependent and maximally caused a 150-fold increase in murine ϵγ-globin gene expression in-vitro. Human HSC transduced (MOI=2) with the LCR-LV and differentiated in-vitro resulted in a 3-fold increase of γ-globin mRNA in erythrocytes. SCD patient-derived HSC, which were transduced with LCR-LV (MOI=5) and transplanted into immunodeficient NSG mice, resulted in peripheral human erythrocytes that showed a reversal of the hemoglobin switch with a maximal induction 10% HbF as measured by flow cytometry. In a human ex-vivo B-lymphoid differentiation assay, SFFV-LV transduced (MOI=2) HSC populations with a 70% BCL11A knock-down showed no difference versus control in total cell numbers or in the sequential acquisition of CD43, CD19 and IgM (corresponding to physiological differentiation from common lymphoid progenitor to immature B-lymphocyte), thus showing no evidence for a differentiation block. Since IFN-response gene activation has been described with shRNA silencing and could potentially lead to HSC exhaustion, we quantified ISG20, ISG56 and OAS1 mRNA levels in human HSCs after miR-223-based SFFV-LV transduction (MOI=2). We observed less IFN-response gene activation in miR223-based SFFV-LV transduced HSC than in non-miRNA-based shRNA SFFV-LV transduced controls. In summary, our pre-clinical data demonstrates the potential efficacy of hematopoietic miRNA-mediated BCL11A/Bcl11a silencing to induce the expression of fetal hemoglobin in murine and human model systems, including primary cells. At the levels of BCL11A knock-down obtained, we did not observe any B-lymphoid toxicity. These results support the translation of LV-based miRNA-mediated BCL11A silencing into the clinical setting. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 100 (4) ◽  
pp. 1045-1055 ◽  
Author(s):  
David W. Emery ◽  
Georgios Gavriilidis ◽  
Haruhiko Asano ◽  
George Stamatoyannopoulos

Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4640-4648 ◽  
Author(s):  
Betty S. Pace ◽  
Gary L. White ◽  
George J. Dover ◽  
Michael S. Boosalis ◽  
Douglas V. Faller ◽  
...  

Orally bioactive compounds that induce γ globin gene expression at tolerable doses are needed for optimal treatment of the β-hemoglobinopathies. Short-chain fatty acids (SCFAs) of 2 to 6 carbons in length induce γ globin expression in animal models, and butyrate, phenylbutyrate, and valproate induce γ globin in human patients. The usefulness of these compounds, however, is limited by requirements for large doses because of their rapid metabolism and their tendency to inhibit cell proliferation, which limits the pool of erythroid progenitors in which γ globin can be induced. Selected short-chain fatty acid derivatives (SCFADs) were recently found to induce γ globin and to stimulate the proliferation of hematopoietic cells in vitro. These SCFADs are now evaluated in vivo in nonanemic transgenic mice containing the human β globin gene locus and in anemic phlebotomized baboons. In mice treated with a SCFAD once daily for 5 days, γ globin mRNA increased 2-fold, reticulocytes increased 3- to 7-fold, and hematocrit levels increased by 27%. Administration of 3 SCFADs in anemic baboons increased F-reticulocytes 2- to 15-fold over baseline and increased total hemoglobin levels by 1 to 2 g/dL per week despite ongoing significant daily phlebotomy. Pharmacokinetic studies demonstrated 90% oral bioavailability of 2 SCFADs, and targeted plasma levels were maintained for several hours after single oral doses equivalent to 10% to 20% of doses required for butyrate. These findings identify SCFADs that stimulate γ globin gene expression and erythropoiesis in vivo, activities that are synergistically beneficial for treatment of the β hemoglobinopathies and useful for the oral treatment of other anemias.


1994 ◽  
Vol 88 (3) ◽  
pp. 555-561 ◽  
Author(s):  
Susan P. Perrine ◽  
George H. Dover ◽  
Pratibha Daftari ◽  
Carol T. Walsh ◽  
YuXin Jin ◽  
...  

Blood ◽  
1984 ◽  
Vol 63 (6) ◽  
pp. 1278-1284 ◽  
Author(s):  
RS Weinberg ◽  
SE Antonarakis ◽  
HH Jr Kazazian ◽  
GJ Dover ◽  
SH Orkin ◽  
...  

To determine whether hemoglobin regulation is normal in diseases affecting beta-globin gene expression, globin synthesis was examined in members of a family of a patient with hereditary persistence of fetal hemoglobin/beta o-thalassemia (HPFH/beta o-thal). The HPFH defect is the Ghanian type II, with a deletion from psi beta 1 to at least 20 kb 3′ to beta. The beta o-thal gene has the haplotype II restriction enzyme pattern and has the beta 39 nonsense mutation. Erythroid colonies from blood BFU-E were radiolabeled, and globin chains were separated by gel electrophoresis. Colonies from the beta o-thal heterozygote had non-alpha/alpha ratios more balanced than in the reticulocytes. Gamma synthesis was 11% of non-alpha, which is higher than in reticulocytes, but within the range seen in normal adult colonies. Both HPFH heterozygotes produced 20%-30% gamma in erythroid colonies as well as reticulocytes, although non-alpha/alpha was more balanced in the colonies. The HPFH/beta o-thal patient produced 100% gamma in reticulocytes and in colonies. G gamma and gamma-synthetic proportions were not correlated at the individual colony level in the heterozygotes, suggesting that they had “adult” and not “fetal” progenitor cells. The Hb expression of these adult progenitors is presumably modulated normally in vivo in beta o-thal, but the normal decrease in HbF production does not occur in gene deletion HPFH.


Sign in / Sign up

Export Citation Format

Share Document